
Artificial Intelligence Techniques for Understanding Gothic

Cathedrals

Stefaan Van Liefferinge
1
, Charles Hollingsworth

2
, Rebecca A. Smith

1
,

Michael A. Covington
2
, and Walter D. Potter

2

1Lamar Dodd School of Art, The University of Georgia, Athens, Georgia 30602, USA
2Institute for Artificial Intelligence, The University of Georgia, Athens, Georgia 30602, USA

Abstract— This paper introduces a work in progress on a
new research topic for artificial intelligence. It presents the
first stages of research that investigates the capacities of
AI to understand the architectural rules that define historic
architecture: specifically those of Gothic cathedrals. Gothic
architecture has its own logic. It follows rules that are
defined by physical and structural constraints as well as
by the style of the architecture. This project will analyze
specialized descriptions of Gothic architecture and translate
them into computer code. On the long run this will result
in an intelligent computational model, a program that can
understand the structure of a Gothic cathedral and reason
about its architecture. This paper introduces the background
of this project, sketches a small knowledge base illustrating
the approach, and describes the potential impact of this type
of research on the study of historic architecture.

Keywords: Gothic Cathedrals, Architectural Descriptions,
Knowledge Representation, Text Understanding, Logic,
Computational Reasoning

1. Introduction and overall method

The limits prescribed by architectural design make built
structures a good subject for AI experimentation.1 It is
thus not surprising that a number of projects have brought
architecture within the scope of AI. For example, architec-
tural historians have indicated how patterns in the language
of architecture can be approached as if it were code [1].
Also engineers have investigated how to use AI for archi-
tectural research and design. Some have proposed systems
to obtain the logical configuration of built structures [2].
Others have developed algorithms for producing computer-
generated models of historic architecture [3], [4]. These ini-
tiatives underscore the affinity between AI and architecture.
However, up to now, research has focused on the buildings
themselves without addressing an intermediate medium as,
for example, written architectural descriptions.

1This research benefited from the generous support of a Digital Hu-
manities Start-Up Level I Grant from the National Endowment for the
Humanities (Grant Number HD5110110), a University of Georgia Research
Foundation Grant, and from The University of Georgia President’s Venture
Fund.

This research project involves a method that utilizes a
translation of architecture into a logical system. More pre-
cisely, it takes advantage of the existence of architectural de-
scriptions in the literature, descriptions that are expressed in
a natural language and that follow specific rules. Indeed, the
conventions which architecture generally obeys have defined
a language, a structured and logical means of describing
architecture. Architectural historians commonly manipulate
this tool to communicate their analysis of buildings. These
descriptions reflect the structure and rules of architecture,
and, conversely, the conventions that architectural texts fol-
low are well adapted to describing built structures.

Thus, instead of searching for a direct mapping between
actual buildings and an intelligent computer system, our
research investigates the application of AI technologies for
understanding written descriptions of buildings. For this
task a subset of architecture, Gothic cathedrals, was chosen
[5]. This subset is well adapted because Gothic cathedrals
are known for being organized following recurrent patterns.
Their internal organization is valuable and serves as a
heuristic to codify the logic of their architecture.

While describing architecture is a practice in obeying
conventions, it is nonetheless a human activity that combines
presupposed knowledge, intelligence, and creativity. These
factors put this research project well beyond coding or
modeling. It searches to catch the processes involved in
a specific discipline - architectural history - and to bring
these within the reach of computational logic. Ultimately,
we would like to implement a system that can automatically
translate between English and a computer, and which can
reason about any description of architecture.

In broad lines, the adopted method of research is as fol-
lows. Schemes commonly used to describe Gothic cathedrals
are analyzed and categorized. This classification is used
to produce an architectural description language (ADL), a
simple subset of English that is sufficient for describing the
architectural features of interest. In this ADL we write a
generic description that captures those features common to
most Gothic cathedrals. Descriptions of particular cathedrals
need only describe how they differ from this canonical
description, as described in [6]. However, the translation
of architectural descriptions into formal logic is no simple

Paper presented at the ICAI'11 - The 2011 International Conference on Artificial Intelligence 
http://www.world-academy-of-science.org/worldcomp11/ws/program/ica18



PLINTH

BASE

SHAFT

NECKING

CAPITAL

ABACUS

PLINTH

BASE

SHAFT

CAPITAL

ABACUS

Fig. 1: Column, with and without necking

shaft([shaft_inst(1),X]) :- column(X).

has(X, [shaft_inst(1),X]) :- column(X).

Fig. 2: Prolog translation of “Every column has a shaft.”

immediately_above(X,Y) :-
necking(X),
shaft(Y),
has(ParticularColumn, X),
has(ParticularColumn, Y).

Fig. 3: Prolog translation of “If a column has a necking, it
is immediately above the shaft.”

task. For this, at this stage, we are experimenting with the
translation of a small subset of architecture, that of a column,
into a declarative language and testing how a computer can
operate and interactively reason with this subset.

2. A Minimal Case Study

Because the project aims at identifying knowledge presup-
posed in descriptions of architecture, knowledge representa-
tion is of central importance to our project. Architectural

descriptions must be translated into a formal, machine-
readable format that can be used for responding to queries
and drawing inferences. We decided to render these descrip-
tions as source code for the logic programming language
Prolog, because the Prolog interpreter already incorporates
question answering and inference. Additionally, much work
has already been done on translating from natural language
to Prolog [7], [8].

We chose first to devise a knowledge base for describing
Gothic columns, with the intention of expanding this later
to include other architectural features. Columns were chosen
because, while they play a fundamental role in a cathedral,
they are fairly simple structures. Furthermore, the features in
a column are arranged very simply, one on top of the other,
and the order does not vary. However, certain features, such
as the base, capital, and shaft, are found in all columns, while
others, such as neckings and plinths, are not always present
(Fig. 1). We thus needed to be able to represent concepts
such as “Every column has a shaft” and “If a column
has a necking, then the necking is immediately below the
capital.” Finally, we needed to account for the fact that
many architectural features are repeated, so that one might
encounter statements such as “Every vaulting unit has four
columns.” For this last requirement, we made extensive use



of skolemization [9], a well-known method for eliminating
existential quantifiers. The use of skolemization in logical
programming is covered in [7], [10]; our implementation is
a modified version of that described in [8].

The Prolog translation of the assertion that “Every column
has a shaft” is in Figure 2. The Prolog term [shaft_inst(1),X]
is a Skolem function, a way of providing a unique identifier
for each shaft that is a function of the name of the column
of which it is a component. In other words, we are asserting
two things: for each column X, there exists a unique shaft
named [shaft_inst(1),X]; and column X has that shaft as one
of its components. These identifiers are admittedly unwieldy,
but should only be used internally by our program: the end
user should never have to type them as part of a query. The
listing in Figure 3 illustrates how to say “The necking is
immediately above the shaft,” while bearing in mind that
not all columns will have a necking.

This states that, if some particular column has both a
necking and a shaft, the necking is immediately above the
shaft. Elsewhere we deal with columns without neckings, in
which case it is the capital which is immediately above the
shaft. This is in fact the default, and if we simply mention
a column without specifying whether it has a necking, the
system assumes it has none. However, if we subsequently
assert that the column does have a necking, the previously
derived facts about the relative locations of the capital
and shaft must be revised. To do this we make use of
nonmonotonic reasoning [11], [12], a form of reasoning that
allows previously deduced assertions to be defeated by new
evidence. Our implementation is similar to that presented in
[13].

At present, here is a very basic set of queries which
the user can make to our knowledge base. To get a list of
constituent parts of a column named column1, for example,
the user can type

?- has(column1, X).

into the Prolog interpreter. For an exhaustive list of the
components of vaulting unit v1 and their various sub-
components, type:

?- has(v1,X), has(X,Y).

To get a list of all the components below the capital in
column1, type:

?- has(column1, X), capital(X), above(X, Y).

While this simple example already captures some essential
capabilities needed for architectural description, we will
expand this knowledge base to deal with more and more
sophisticated concepts. Eventually, a natural language front
end will take the place of the Prolog query interface, making
the system more usable, and paving the way for eventually
being able to handle more typical architectural texts.

3. Future Impact

Both architectural history and artificial intelligence will
benefit from the combination of technology and traditional
methods of building analysis. It will allow architectural
historians to understand better how we write architectural
descriptions, will be a beneficial study tool for students and
professionals alike, and will eventually be able to give us
accurate visuals of buildings. Engineers working in artificial
intelligence can expect from this project an entirely new
scope for natural language processing, and to apply artificial
intelligence to a previously little-explored field.

Writing for architectural history is a complex and often
subjective process. The number of assumptions made when
writing a description of a building, particularly when writing
about Gothic architecture, is vast. A program that could
“read” and analyze architectural descriptions would be en-
tirely new. Such a program would be able to detect trends
among various essays and treatises that scholars are often
unaware exist. These trends could be as simple as the order
in which a building elevation is described, to something as
complex as the nature of the geometrical pattern from which
the plan is derived. The discovery of patterns within written
text could further the study of natural language processing by
highlighting how humans describe buildings. It could show
how we translate the experience of a building into written
description – and possibly underscore the limitations within
writing. Previously unknown peculiarities within individual
buildings could be found and studied by experts, without
affect from the voice of a particular author or the subjective
analysis of future scholars.

One of the long-term goals of this project is to create a
program that can generate models that integrate 3D images
of buildings, expert knowledge of architectural historians,
and archaeological data. This can have a profound effect on
the study of architectural history and provide a fascinating
field of exploration for artificial intelligence. For example,
by using written sources, the system could create a building
design or plan that is historically more valid than that of a
human scholar drawing by CAD or by hand. Applications
of this type of image creation program should also be of
interest to engineers applying AI methods in the virtual game
design industry. Engineers could create buildings and cities
that were previously limited to the human imagination. The
program could use historic written accounts to understand
better what the original author actually meant to describe,
even if the account is mistaken or lacking. This will allow
us to create models and imagery of buildings that exist only
in descriptive accounts.

Often drawings of buildings that no longer exist or may
have never existed are inaccurate and misleading. This
project opens a door to the generation in the future of accu-
rate and detailed elevations, floor plans, and virtual tours.
Such models could, for example, inform preservationists



about previous structural interventions in buildings. This
would enable more accurate repairs, which would lead to
the continuing survival of many of the world’s treasures. The
cooperation between these two seemingly remote fields will
be mutually beneficial, and likely foreshadows the coming
of new interdisciplinary studies – combining artificial intel-
ligence with both architectural history and other fields in the
humanities and sciences.

References

[1] William J. Mitchell. The logic of architecture: Design, computation,
and cognition. MIT Press, Cambridge, MA, USA, 1990.

[2] Atsushi Saito, Junzo Munemoto, and Daisuke Matsushita. Acquiring
Configuration Rules of Form Elements from “Historic” Architectural
Facade Employing Inductive Logic Programming. T. Washio et al.
(Eds.): JSAI 2005 Workshops, LNAI 4012, 190–200, 2006. Springer-
Verlag, Berlin-Heidelberg.

[3] Yong Liu, Congfu Xu, Qiong Zhang, and Yunhe Pan. The smart
architect: Scalable ontology-based modeling of ancient Chinese archi-
tectures. IEEE Intelligent Systems, 23:49–56, 2008.

[4] Yong Liu, Yunliang Jiang, and Lican Huang. Modeling Complex Archi-
tectures Based on Granular Computing on Ontology. IEEE Transactions
on Fuzzy Systems, vol. 18, no. 3, 585–598, June 2010

[5] Paul Frankl. Gothic Architecture. Revised by Paul Crossley. Yale
University Press: New Haven, 2000.

[6] Charles Hollingsworth, Stefaan Van Liefferinge, Rebecca A. Smith,
Michael A. Covington, and Walter D. Potter. The ARC Project: Cre-
ating logical models of Gothic cathedrals using natural language pro-
cessing. Proceedings of ACL 2011 Workshop on Language Technology
for Cultural Heritage, Social Sciences, and Humanities (forthcoming)

[7] Patrick Blackburn and Johan Bos. Representation and inference for
natural language: A first course in computational semantics. CSLI
Publications, Stanford, CA, USA, 1999.

[8] Michael A. Covington, Donald Nute, Nora Schmitz, and David Good-
man. From English to Prolog via discourse representation theory. Tech-
nical report, Advanced Computational Methods Center, The University
of Georgia, 1988. http://www.ai.uga.edu/ftplib/ai-reports/ai010024.pdf
(available as of May 2011).

[9] Thoralf Skolem. Über die mathematische Logik (Nach einem Vortrag
gehalten im Norwegischen Mathematischen Verien am 22. Oktober
1928). In Selected Works in Logic. Jens Erik Fenstad, ed. Universitets-
forlaget, Oslo - Bergen - Tromsö, 1970, 189–206.

[10] Jeffrey Cua, Ruli Manurung, Ethel Ong, and Adam Pease. Repre-
senting Story plans in SUMO. In Proceedings of the NAACL HLT
2010 Second Workshop on Computational Approaches to Linguistic
Creativity. Association for Computational Linguistics, Los Angeles,
California, June 2010, 40–48.

[11] Grigoris Antoniou. Nonmonotonic Reasoning. The MIT Press, Cam-
bridge, MA, USA, 1997.

[12] Raymond Reiter. Nonmonotonic Reasoning. Annual Review of Com-
puter Science, 1987.2: 147–186.

[13] Donald Nute. Defeasible Logic. In Proceedings of the Applications of
Prolog 14th International Conference on Web Knowledge Management
and Decision Support (INAP’01). Oskar Bartenstein, Ulrich Geske,
Markus Hannebauer, and Osamu Yoshie, eds. Springer-Verlag, Berlin-
Heidelberg, 151–169.


