ShaC User’s Guide

Matt Voss

September 21, 2005

1 Overview

This document is a user’s guide for a Prolog program called A Shallow Syntactic
Complexity Analyzer (ShaC) [1]. In general, ShaC takes a text as input and
returns a syntactic complexity score for the text. The user is referred to [1] for a
detailed description of what the program does. The following lists and describes
predicates defined by that program. Note that there are many different ways
in which one might want to interact with the core of this software. These
predicates only give a few of the possibilities. The user knowledgeable in Prolog
is encouraged to extend these predicates as necessary for individual projects.

2 Getting Started

All of the relevant files should be stored in shac.ZIP. Extract all files into
the same directory. Consult shac.pl to begin using the software in the ways
outlined below.

3 Templates

Many of the predicates in the sections below take as input a file listing the
appropriate templates and each template’s corresponding D-Level. For example,
the template for a relative clause modifying the object of the verb is as follows:

template (3, [-,vpsed,n,comp]) .

This predicate indicates that the template corresponds to a D-Level of 3 and
that the template itself is [-,vpsed,n, comp].

Bundled with the software is a file called ‘templates.txt’, which includes all
the templates used during the creation of the program. The user may create
other files including other templates for their personal use.



4 Files

Some of the predicates outlined below will rank all of the files in a list of files.
These predicates assume the file listing all of the files to be analyzed by ShaC
is a series of file_loc/3 facts. For example:

file_loc(1,1,’filenamel.txt’).
file_loc(2,0,’filename2.txt’).
file_loc(3,1,’filename3.txt’).

The first argument is the file number, arbitrarily set by the user. The second
argument indicates that the file should be read with a ‘1’ and that it should not
be read with a ‘0’. This allows the user to specify whether certain files should
be skipped, a feature useful when dealing with large batches of files. The third
argument lists the name of the file to be processed.

The file containing the listing of file_loc/3 predicates should also include
a file/1, whose argument is the number of file_loc/3 listings in the file.
For example, if you wanted to process 30 files, you would have 30 file_loc/3
predicates, and in the file the fact

files(30).

5 Predicates

This section is divided into two parts. The first describes predicates used to
test the validity of the program. The second section describes predicates used
to rank and evaluate texts according the scoring system outlined in [1].

5.1 Test Predicates

The following predicates all read a text one line at a time, and tally how many
of each template can be found in each line. I have assumed in writing them that
the input text is formatted to have one sentence per line.

rank_a_sentence(+String,+TemplateFile)

This predicate takes as input a sentence, as a list of atoms, and a file with a
listing of templates. It ranks the sentence according to the given templates and
prints out the results as follows:

?- rank_a_sentence([the,dog,that,the,boy,liked, jumped,over,the,moon],’templates.txt’).
sentence: [the, dog, that, the, boy, liked, jumped, over, the, moon]

phrase: [[the], dog, that, [thel, boy, liked] count: 1

level: 3

template: [-, n, comp, n, vpsed]

line total score: 3

score level: 3 score: 1



Yes

The predicate prints several useful pieces of information: the sentence ana-
lyzed in list form, each phrase the program found as a list of atoms with optional
words also in brackets, the D-Level of the phrase, the template used, the total
score for the line, and a list of the D-Level followed by the number of phrases
found at that level.

rank_sentences(+File,+Templates)

This predicate ranks all of the sentences in the file File according to the tem-
plates in Templates and prints the results to the screen. For example:

?- rank_sentences(’testfiles//abcnews.txt’,’templates.txt’).

% templates.txt compiled 0.00 sec, 2,336 bytes

sentence: [we, are, living, in, a, time, when, the, other, side, doesnt, want, us, to, s
phrase: [want, us, to, see] count: 1

level: 4

template: [-, vnfc, n, to, vpl]

phrase: [when] count: 1

level: 5

template: [-, subconj]

line total score: 9

score level: 4 score: 1

score level: 5 score: 1

sentence: [facts, are, inconvenient, facts, about, global, warming, facts, about, mercur
phrase: [said] count: 1

level: 3

template: [-, compv]

line total score: 3

score level: 3 score: 1

sentence: [the, former, first, lady, spoke, monday, at, a, new, york, women, for, hillar;
line total score: O

sentence: [she, leads, potential, gop, senate, opponents, to, in, recent, polls]

line total score: O

sentence: [there, has, never, been, an, administration, i, dont, believe, in, our, histo:
phrase: [power, to, further] count: 1

level: 1

template: [-, vpsed, to, vpl]

phrase: [believe] count: 1

phrase: [said] count: 2

level: 3

template: [-, compv]

line total score: 7

score level: 1 score: 1

score level: 3 score: 2



sentence: [a, spokeswoman, for, the, republican, national, committee, compared, clinton,
line total score: O

sentence: [it, s, too, bad, that, new, york, s, senator, is, now, taking, her, cues, fro
phrase: [said] count: 1

level: 3

template: [-, compv]

line total score: 3

score level: 3 score: 1

sentence: [clinton, and, her, aides, maintain, that, her, focus, is, on, winning, a, sec
phrase: [in, [not], chasing] count: 1

level: 5

template: [-, ping, ving]

line total score: 5

score level: 5 score: 1

sentence: [but, republicans, say, her, sights, clearly, are, on, the, presidency]
phrase: [say] count: 1

level: 3

template: [-, compv]

line total score: 3

score level: 3 score: 1

rank_sentence_file(+File,+Templates,+OutFile)

This predicate ranks all of the sentences in File according to the templates in
the file Templates, and writes the result to the file OutFile. It calls rank_sentences/2
described above.

?- rank_sentences(’testfiles//abcnews.txt’,’templates.txt’,’examplel.txt’).

Yes

rank_sentences_files(+Files,+Templates,+OutFile)

This predicate ranks all of the sentences in a list of files specified by the file
Files according to the templates found in the file Templates, and puts the
result in the file OutFile. See Section 4 for an overview of the format Files
must be in. For example:

?- rank_sentences_files(’testers2.txt’, ’templates.txt’,’example2.txt’).
% testers2.txt compiled 0.01 sec, 4,220 bytes
% templates.txt compiled 0.01 sec, 2,304 bytes

Yes



5.2 Scoring Predicates
rank_single_level(+File,4+Template,+Count)

This predicate prints out all occurences of the template Template in file File

?- rank_single_level(’testfiles//abcnews.txt’, [-,compv],X).
phrase: [said] count: 1

phrase: [believe] count: 2

phrase: [said] count: 3

phrase: [said] count: 4

phrase: [say] count: 5

X =5
Yes

rank_atoms(+Sentence,+Template,-Score)

Ranks all of the atoms in the list of atoms Sentence according to the template
Template. It returns either a 1 or 0 depending on success or failure, and prints
out the phrase that matches the template, as follows:

?- rank_atoms([the,boy,that,the,girl,saw], [-,n,comp,n,vpsed] ,X).
phrase: [[the]l, boy, that, [thel, girl, saw] count: 1

No

rank files_to_file(4Files,+Templates,+OutFile)

Ranks the files in Files according to the templates in Templates, and puts the
result in OutFile.

?- rank_files_to_file(’testers2.txt’,’templates.txt’,’example3.txt’).

Yes

rank_from_templates_score_list(+FileNum,+Files,4+Templates,-Score)

Ranks file number FileNum from the file listing in Files according to the tem-
plates listed in the file Templates, returns a score for the text, and prints out
a full listing of each phrase it found for each template. For example:

?7- rank_from_templates_score_list(6,’testers2.txt’,’templates.txt’,Score).
% testers2.txt compiled 0.00 sec, 4,188 bytes

level: 1

template: [-, vpsed, to, vpl]



phrase: [power, to, further] count: 1
level: 1
template: [-, vnfc, ving]

level: 3
template: [-, pnd, nom]
level: 3

template: [-, n, comp, vpsed]
level: 3

template: [-, n, comp, n, vpsed]
level: 3

template: [-, vpsed, comp, n, V]
level: 3

template: [-, compv]

phrase: [said] count: 1

phrase: [believe] count: 2

phrase: [said] count: 3

phrase: [said] count: 4

phrase: [say] count: 5

level: 3

template: [-, vpsed, n, comp]
level: 3

template: [-, it, bev, ving, comp2]
level: 3

template: [-, it, bev, vpsed, comp2]
level: 3

template: [-, it, bev, adj, comp2]
level: 4

template: [-, vnfc, n, to, vpl]
phrase: [want, us, to, see] count: 1
level: 4

template: [-, vnfc, nacc, vppl]
level: 4

template: [-, than]

level: 4
template: [-, as, adj, as]
level: 5

template: [-, subconj]

phrase: [when] count: 1

level: 5

template: [-, ping, ving]

phrase: [in, [not], chasing] count: 1
score level 1: 0.00520833

score level 1: O

score level 3: O

score level 3: O

score level 3: O



score level
score level
score level

.078125

score level
score level
score level
score level
score level
score level

.0208333

score level
score level
score level

.0260417
.0260417

OO DD WwwWwwWwwww

Score = 0.15625 ;

No

rank_from_templates(+FileNum,+Files,+Templates,-Score)

This predicate is similar to rank_from_templates_score_list/4 but does not
print out the score at each level. For example:

?- rank_from_templates(6,’testers2.txt’,’templates.txt’,Score).
level: 1

template: [-, vpsed, to, vpll

phrase: [power, to, further] count: 1

level: 1

template: [-, vnfc, ving]

level: 3

template: [-, pnd, nom]

level: 3

template: [-, n, comp, vpsed]
level: 3

template: [-, n, comp, n, vpsed]
level: 3

template: [-, vpsed, comp, n, v]
level: 3

template: [-, compv]
phrase: [said] count: 1
phrase: [believe] count: 2
phrase: [said] count: 3
phrase: [said] count: 4
phrase: [say] count: 5

level: 3
template: [-, vpsed, n, comp]
level: 3



template: [-, it, bev, ving, comp2]

level: 3

template: [-, it, bev, vpsed, comp2]
level: 3

template: [-, it, bev, adj, comp2]
level: 4

template: [-, vnfc, n, to, vpl]
phrase: [want, us, to, see] count: 1

level: 4

template: [-, vnfc, nacc, vppl]
level: 4

template: [-, than]

level: 4

template: [-, as, adj, as]
level: 5

template: [-, subconj]

phrase: [when] count: 1

level: 5

template: [-, ping, ving]

phrase: [in, [not], chasing] count: 1

Score = 0.15625 ;

No

rank_from_templates(+FileName,+Templates,Score)

This predicate is similar to rank_from_templates/4 described above, but in-
stead takes the file name FileName directly as input. For example:

?7- rank_from_templates(’testfiles//abcnews.txt’,’templates.txt’,Score).
level: 1

template: [-, vpsed, to, vpl]

phrase: [power, to, further] count: 1

level: 1

template: [-, vnfc, ving]

level: 3

template: [-, pnd, nom]

level: 3

template: [-, n, comp, vpsed]
level: 3

template: [-, n, comp, n, vpsed]
level: 3

template: [-, vpsed, comp, n, V]
level: 3

template: [-, compv]



phrase: [said] count: 1
phrase: [believe] count: 2
phrase: [said] count: 3
phrase: [said] count: 4
phrase: [say] count: 5

level: 3

template: [-, vpsed, n, comp]

level: 3

template: [-, it, bev, ving, comp2]
level: 3

template: [-, it, bev, vpsed, comp2]
level: 3

template: [-, it, bev, adj, comp2]
level: 4

template: [-, vnfc, n, to, vpl]
phrase: [want, us, to, see] count: 1

level: 4

template: [-, vnfc, nacc, vppl]
level: 4

template: [-, than]

level: 4

template: [-, as, adj, as]
level: 5

template: [-, subconj]

phrase: [when] count: 1

level: 5

template: [-, ping, ving]

phrase: [in, [not], chasing] count: 1

Score = 0.15625 ;

No

rank files_sas_scores(+Files,+Templates,+OutFile)

Ranks the files in Files according to the templates in Templates and puts the
results in OutFile. Output is formatted for SAS. It displays the file name and
the overall score for each text separated by a space. For example, the following
call

?-rank_files_sas_scores(’testers2.txt’, ’templates.txt’,’exampled.txt’).
% templates.txt compiled 0.01 sec, 2,336 bytes
% testers2.txt compiled 0.01 sec, 4,188 bytes

Yes

produces the output



testfiles\abcnews.txt 0.15625
testfiles\gray.txt 0.115578

in the file ‘exampled.txt’.

References

[1] Voss, M. (2005) Determining Syntactic Complexity Using Very Shallow
Parsing. Master’s Thesis, University of Georgia.

10



