
Research Report AI-1993-04

Defeasible Prolog

Donald Nute

Artificial Intelligence Programs
The University of Georgia

Athens, Georgia 30602–7415 U.S.A.

Copyright c© 1993 Donald Nute



Defeasible Prolog

Donald Nute
Artificial Intelligence Programs and Department of Philosophy

The University of Georgia, Athens, GA 30602, U.S.A
dnute@ai.uga.edu

d-Prolog1 is a nonmonotonic extension of the
Prolog programming language. It is an implemen-
tation of defeasible logic (Nute 1991, 1992). I will
describe the system and the utilities that support
development of d-Prolog programs, making exten-
sive use of simple examples to explain the logic of
the system.

Many nonmonotonic formalisms use a special
unary operator to mark peculiar conditions in rules.
As long as all the conditions for the rule are satis-
fied, the consequent of the rule is detachable. For
example, in autoepistemic logic we can always de-
rive r from p, ∼K∼q, and p ∧ ∼K∼q ⊃ r. By con-
trast, d-Prolog and other defeasible systems (Loui
1987a, 1987b; Geffner 1992) use rules whose con-
sequents may not be detachable even when their
antecedents are derivable. Detachment of the con-
sequent of one of these defeasible rules may be de-
feated by another rule. The competing rule may ei-
ther rebut the first rule by supporting a conflicting
consequent, or it may simply undercut the first rule
by identifying a situation in which the rule does not
apply (Pollock 1991). Defeasible logic uses strict
rules, defeasible rules, and undercutting defeaters.

1 The basics

We begin by defining the language of d-Prolog. One
unary functor neg and two binary infix functors :=
and :^ are added to Prolog. neg is a sound nega-
tion operator which we distinguish from the built-
in negation-by-failure (NBF) operator not. Where
Atom is an atomic clause, Atom and neg Atom are
complements of each other. neg Atom can occur in
either the Head or the Body of a rule. Clauses of
the form Head := Body are called defeasible rules,
and clauses of the form Head :^ Body are called
undercutting defeaters or simply defeaters . A de-

1This paper was presented at the AAAI Fall Symposium
on Automated Deduction in Nonstandard Logics, Raleigh,
NC, October 22–24, 1993.

feasible rule of the form Head := true is called a
presumption. By contrast, ordinary Prolog rules
are called strict rules.

Conclusions may be derivable either strictly or
defeasibly. A conclusion is derivable strictly if and
only if it is derivable from the facts and strict rules
in the knowledge base alone. A clause Goal is
strictly derivable, then, just in case the query ?- Goal.
succeeds. A conclusion is defeasibly derivable if it
is derivable using all the clauses in the knowledge
base including defeasible rules, presumptions, and
defeaters. Thus, a conclusion is defeasibly deriv-
able if it is strictly derivable. We introduce a new
unary functor @ to invoke the defeasible inference
engine, and a clause Goal is defeasibly derivable
just in case the query ?- @ Goal. succeeds. We
read @ Goal as ‘Defeasibly, Goal’ or as ‘Apparently,
Goal’.

Another unary functor @@ is introduced to sup-
port exhaustive investigation of queries. We want
a way to find out with a single query whether a
ground atomic clause or its negation is either strictly
or defeasibly derivable. In response to the query
?- @@ Goal, d-Prolog will test for all these possi-
bilities and give an appropriate report: ‘definitely
yes’, ‘definitely no’, ‘presumably yes’, ‘presumably
no’, or ‘can’t tell’.

When we have two strict rules with incompat-
ible heads, arguably one of the rules is incorrect
or the body of one or the other must be false. If
the bodies of both are strictly derivable, we have
no choice but to also infer the heads of both pro-
ducing a contradiction. But when the bodies of
both are only defeasibly derivable, we have a choice
about what to do. We cannot tell from this situ-
ation which condition in which rule to reject, but
we can at least contain the damage by not infer-
ring the consequent, even defeasibly, of either rule.
Thus we make a design decision: a strict rule can-
not be defeated if its body is strictly derivable; how-
ever, a strict rule is defeated by another strict rule

1



with an incompatible head provided the body of
the first rule is only defeasibly derivable and the
body of the second is at least defeasibly derivable.
When this happens, we say that the first rule is
rebutted by the second since the second rule ac-
tually provides support for the incompatible con-
clusion. Notice that contradictions are impossible
in Prolog since the only form of negation available
is negation-by-failure. The same query can never
both succeed and fail finitely. But as soon as we
add sound negation, the possibility for contradic-
tory knowledge bases arises. Since contradictions
are localized even for that part of the system made
up of facts and strict rules, d-Prolog is paraconsis-
tent .

In contrast, defeasible rules may be rebutted
by facts, strict rules, or other defeasible rules, and
they may be undercut by defeaters. A fact that
is incompatible with the head of a defeasible rule,
or a rule (whether strict, defeasible, or only a de-
feater) whose head is incompatible with the head of
a defeasible rule competes with that defeasible rule,
and the defeasible rule and the competing fact or
rule are competitors . The question whether a de-
feasible rule is rebutted or undercut only arises if
the body of the rule is defeasibly derivable. Then
the rule is only rebutted by a fact or rule to which
it is not superior , and only undercut by a defeater
to which it is not superior . Since facts and strict
rules are superior to all defeasible rules, they rebut
any defeasible competitors. We say a defeasible
rule is defeated if it is either rebutted or undercut
by some non-inferior competitor. A rule containing
variables may be defeated for some instantiations
of the variables but not for others.

As a first example, consider the following knowl-
edge base.

born_in(X,usa) :- born_in(X,atlanta).
neg born_in(X,usa) :=

native_speaker(X,greek).
born_in(stavros,atlanta) := true.
native_speaker(stavros,greek) := true.

For this knowledge base, d-Prolog responds to the
query ?- @@ born_in(stavros,usa).with the re-
port ‘presumably yes’ because the strict rule is su-
perior to the defeasible rule.

Another familiar example, the so-called Nixon
Diamond, demonstrates how two defeasible rules
may defeat each other. We represent this example
in d-Prolog by the following facts and rules.

pacifist(X) := quaker(X).
neg pacifist(X) := republican(X).

quaker(nixon).
republican(nixon).

The correct response to the query

?- @@ pacifist(nixon)

is ‘can’t tell’ since neither of the two defeasible rules
is superior to the other and each is rebutted by the
other. However, we could decide that in this kind of
situation political party takes priority over religious
affiliation. Then we can add the following clause to
our d-Prolog knowledge base.

sup((pacifist(X) := quaker(X)),
(neg pacifist(X) := republican(X))).

With this addition, the query

?- @@ pacifist(nixon).

produces the report ‘presumably no’.

2 Specificity

A natural way to decide superiority of rules and
to adjudicate conflicts between defeasible rules is
to use specificity. Specificity is exemplified by the
familiar Tweety Triangle:

flies(X) := bird(X).
neg flies(X) := penguin(X).
bird(X) := penguin(X).
penguin(tweety).

We can of course infer that Tweety is a bird.
Does Tweety fly? We have conflicting rules, but
we note that a penguin is a specific kind of bird.
Since defeasible rules tell us what is typically or
normally the case, and since we have evidence that
Tweety is atypical at least so far as flying is con-
cerned, we tentatively conclude that Tweety does
not fly. However, penguins are birds, and a pen-
guin that is a bird is in no way an atypical pen-
guin. The more specific rule is superior, and the
query ?- @ neg flies(tweety). succeeds.

In the Tweety Triangle, we can tell from the
knowledge base that the rule for penguins is more
specific than the rule for birds by the presence of
the strict rule

bird(X) :- penguin(X).

As in the following example, specificity can also be
signalled by a defeasible rule.

2



democrat(X) := southerner(X).
conservative(X) := southerner(X).
neg democrat(X) := conservative(X).
southerner(Nunn).
conservative(Nunn).

The query ?- @ democrat(Nunn). succeeds because
the rule for southerners is superior to the rule for
conservatives, and this is so because southerners
are a specific kind of conservative.

How does d-Prolog determine specificity? Ba-
sically, it looks at the bodies of the two conflicting
rules to see if either can be derived from the other.
In the case of Senator Nunn, d-Prolog tests whether
the query ?- @ conservative(Nunn). succeeds from
a reduced knowledge base consisting of all the strict
rules, all the defeasible rules (except presumptions),
and all the defeaters in the knowledge base together
with the clause southerner(Nunn). Then it tries
the converse. Since one test fails and the other suc-
ceeds, d-Prolog concludes that the rule for south-
erners is superior to the rule for conservatives. The
reason for excluding facts and presumptions that
do not occur in the bodies of the rules being com-
pared should be clear. We know that Nunn is in
fact a conservative. So if we used this fact, the
query ?- @ conservative(Nunn). would succeed
from the body of any rule whatsoever.

The derivation of the body of one rule from the
body of another proceeds in exactly the same way
as the derivation of a conclusion from the complete
d-Prolog knowledge base except that the set of facts
and rules used in the derivation is different. This is
accomplished by making the principle predicate in
the inference engine, def_der, a binary predicate
that takes a knowledge base as its first argument
and a goal to be tested as its second argument. For
top-level queries, the knowledge base is the com-
plete d-Prolog knowledge base represented by the
atom root. So the functor @ is defined very simply:

@ Goal :- def_der(root,Goal).

The atom root is replaced by the body of a rule
when specificity is being tested. Thus, in our Sen-
ator Nunn example, the actual queries involved in
the test for specificity are

?- def_der(southerner(Nunn),
conservative(Nunn)).

and

?- def_der(conservative(Nunn),
southerner(Nunn)).

The first query succeeds and the second fails. The
d-Prolog inference engine knows when it sees a knowl-
edge base other than root to restrict itself to the
items listed in the specified knowledge base together
with the strict rules, defeasible rules except pre-
sumptions, and defeaters in the complete or ‘root’
knowledge base.

One more example will make it clearer how d-
Prolog handles specificity. The first example con-
cerns college students. We assume for our exam-
ple that college students are normally adults and
that normally adults are employed, but that college
students normally are not employed. Furthermore,
employed persons typically are self-supporting while
college students typically are not self-supporting.
Finally, we stipulate that Jane is a college student
who is employed. Does Jane support herself? The
rules and facts relevant to this example are:

adult(X) := college_student(X).
neg employed(X) :=

college_student(X).
neg self_supporting(X) :=

college_student(X).
employed(X) := adult(X).
self_supporting(X) := employed(X).
college_student(jane).
employed(jane).

We have two conflicting rules: one for college stu-
dents and another for employed persons. Is either
more specific than the other? Since college stu-
dents are normally adults and adults are normally
employed, it might appear at first glance that the
rule for college students is more specific than the
rule for employed persons. However, the query

?- def_der(college_student(X),
employed(X)).

fails because the rule that college students nor-
mally are unemployed is more specific than the rule
that adults normally are employed. So neither rule
about self-support is more specific, each rule is re-
butted by the other, and d-Prolog responds ‘can’t
tell’ to the query

?- @@ self_supporting(jane).

In d-Prolog, the use of specificity to determine
superiority can be enabled or disabled. The query

?- spec.

toggles between enabling and disabling specificity.
In response to the query, d-Prolog informs the user

3



whether specificity has just been enabled or dis-
abled. Even if specificity is enabled, the program-
mer can still add clauses for the predicate sup to
force resolution of conflicts between rules where
specificity fails to determine superiority. When d-
Prolog is loaded, specificity is enabled by default.

3 Undercutting rules

We have considered several examples involving de-
feasible rules. In the English readings of these
rules, we have used qualifying expressions like ‘nor-
mally’ or ‘typically’ to signal that the rules are de-
feasible. Each defeasible rule provides some evi-
dence for its consequent or, in Prolog terminology,
its head. Undercutting defeaters are quite differ-
ent. An example of an undercutting defeater is

neg flies(X) :^ sick(X).

which we might read as ‘A sick creature might not
fly’ or as ‘The fact that a creature is sick under-
cuts other evidence we may have that it can fly’.
Illness is not presented as a reason for concluding
positively that a creature does not fly; it is only
presented as a reason for rejecting what would oth-
erwise be take as evidence that the creature flies.

An example is in order. A variation of the
Tweety Triangle, this example concerns penguins
that have been genetically altered to have large
wings and correspondingly large flight muscles.

flies(X) := bird(X).
neg flies(X) := penguin(X).
flies(X) :^ altered_penguin(X).
bird(X) :- penguin(X).
penguin(X) :- altered_penguin(X).
altered_penguin(chirpy).

We immediately conclude that Chirpy is both a
penguin and a bird. Does Chirpy fly? The rule for
penguins rebuts the rule for birds, but the defeater
for genetically altered penguins undercuts the rule
for penguins. Since defeaters don’t support their
consequents, and since the other rules are either
rebutted or undercut, d-Prolog responds ‘can’t tell’
to the query ?- @@ flies(chirpy).

4 Preempting defeaters

Notice that while the defeater undercuts the rule
for penguins in the last example, it does not pre-
vent the rule for penguins from rebutting the rule
for birds. We may not want this to happen in cases

where all of the rules involved are defeasible rules
rather than defeaters. The most likely kind of sit-
uation where this could happen is where we have
two Tweety Triangles involved. We’ll begin with
our southern Democrat rules:

democrat(X) := southern(X).
neg democrat(X) := conservative(X).
conservative(X) := southern(X).

These three rules constitute one ‘Tweety Triangle’.
Now we will add another.

democrat(X) := theatrical_agent(X).
neg democrat(X) := businessman(X).
businessman(X) := theatrical_agent(X).

These rules are at least plausible. All that is needed
to complete our example is a southern theatrical
agent.

southern(taylor).
tv_network_owner(tayler).

The question, of course, is whether Taylor is
a Democrat. Looking at our knowledge base, it
appears that the rules for southerners and for busi-
nessmen will rebut each other and that the rules
for conservatives and for theatrical agents will re-
but each other. However, the rule for conservatives
is also rebutted by the more specific rule for south-
erners and the rule for businessmen is also rebutted
by the more specific rule for theatrical agents. It
is reasonable to hold that a defeasible rule that is
rebutted by a superior rule is no longer available
to rebut other rules. In this case, we say that the
defeasible rule rebutted by a superior rule is pre-
empted as a rebutting defeater. Building this in to
the system, we reach the intuitively correct conclu-
sion that Taylor is a Democrat.

Like specificity, preemption of defeaters can be
enabled or disabled. The query to toggle between
the two states is

?- preempt.

In response to the query, d-Prolog informs the user
whether preemption has just been enabled or dis-
abled. By default, preemption is disabled when d-
Prolog is loaded. Preemption has a fairly high com-
putational cost and situations where it is needed to
get intuitively correct results are rare.

5 Conflicts and NBF

The Nixon Diamond illustrates the most common
way that the heads of two rules may be incompati-
ble: when they are complements of each other. But

4



this is not the only way. For example, One cannot
be both a capitalist and a Marxist. In d-Prolog, we
can represent this by the clause

incompatible(capitalist(X),
marxist(X)).

With this clause in the knowledge base, the two
rules

capitalist(X) := owns_restaurant(X).
marxist(X) := born_in(X,china).

become competitors. So rules are competitors if
their heads are complements of each other or if
there is a clause for the predicate incompatible
which states that they are incompatible with one
another. Rather than introduce the predicate incompatible,
one might contemplate using two rules like

neg capitalist(X) := marxist(X).
neg marxist(X) := capitalist(X).

However, these two rules will cause looping in d-
Prolog. Assume Ping, who was born in China,
owns a restaurant. To show that Ping is defeasibly
a capitalist using the rule

capitalist(X) := owns_restaurant(X).

we must determine that the rule is not defeated for
Ping. To do that, we must show that the rule

neg capitalist(X) := marxist(X).

either is not satisfied or is defeated for Ping. Since
Ping was born in China, we will have to show that
the rule

neg marxist(X) := capitalist(X).

is satisfied for Ping. But this brings us back full
circle to our original goal. We prevent this by build-
ing the use of the predicate incompatible into our
defeasible inference engine.

The d-Prolog inference engine does not process
cuts (!), disjunctions (;), and the built-in negation-
by-failure (not) properly. By default, d-Prolog does
not check for the occurrence of these functors and
the behavior of the inference engine is unpredictable
if they are encountered. However, the query

?- syntax.

enables the d-Prolog syntax check which will exam-
ine rules for the occurrence of these functors before
the rule is used. If one of these functors is found,
the user is alerted and d-Prolog aborts the current
query.

While the use of not in d-Prolog programs is
not allowed, d-Prolog still supports negation-by-
failure. In fact, it allows the programmer to specify
for which predicates the ‘closed world assumption’
is to be made. Suppose, for example, we want to
make the closed world assumption for citizenship:
unless there is evidence of citizenship, the query

?- @ neg citizen(X).

should succeed. To accomplish this, we add the
presumption

neg citizen(X) := true.

to the knowledge base. In d-Prolog, any rule whose
body contains at least one clause other than true is
more specific than any presumption. So any posi-
tive evidence of citizenship will defeat our presump-
tion.

6 The YSP

As a final example, we will take a look at the Yale
Shooting Problem (Hanks and McDermott 1987).
This will emphasize some important differences be-
tween d-Prolog and other nonmonotonic formalisms.
Simplifying the example, an assassin waits with
loaded pistol for her victim. When he arrives, she
points the gun at his head and pulls the trigger.
Assuming that pointing a loaded pistol at a per-
sons head and pulling the trigger normally causes
death, the question is whether the victim in the ex-
ample winds up dead. To infer the victim’s death,
we must infer that the gun is loaded at the time
the trigger is pulled. We need a ‘frame’ axiom to
support this inference, and the YSP turns out to
be a version of the frame problem.

McDermott (1987) proposed that nonmonotonic
logic was the solution to the frame problem. We
could formulate a single nonmonotonic axiom say-
ing of every ‘fact’ that it tended to persist through
time. McDermott rejected this solution in (Hanks
and Mcdermott 1987) citing the YSP as a crucial
example of why it doesn’t work. The difficulty is
that we will have two nonmonotonic rules, one say-
ing that the gun tends to stay loaded and another
saying that pointing a loaded gun at a persons head
and pulling the trigger tends to cause death. Mc-
Dermott’s nonmonotonic formalism (McDermott and
Doyle 1980) as well as McCarthy’s circumscrip-
tion (1980, 1986), Reiter’s default logic (1980), and
Moore’s autoepistemic logic (1984), prescribe vio-
lating the smallest number of nonmonotonic princi-

5



ples possible. So we can violate either the the per-
sistence principle or the causal principle for loaded
guns, though it would be gratuitous to violate both.
These two options produce two distinct fixed points,
minimal models, or extensions for our theory. In
the one where the gun becomes unloaded, the vic-
tim survives.

Defeasible logic does not generate multiple ex-
tensions. If it did, a backward chaining nonmono-
tonic inference engine based on it would not be pos-
sible.

The YSP is represented very simply in d-Prolog
using McDermott’s situation calculus.

true(alive(victim),s).
true(loaded(gun),s).
true(F,result(E,S)) := true(F,S).
true(dead(X),

result(shoot_at(gun,X),S)) :=
true(loaded(gun),S),
true(alive(X),S).

incompatible(true(alive(X),S),
true(dead(X),S)).

The first two clauses tell us that the victim is alive
and the gun is loaded in the initial situation s. The
first rule is our temporal persistence principle and
the second rule is the causal principle for shooting
people with loaded guns. The last clause says that
it is impossible for anything to be both alive and
dead in the same situation. The crucial queries are
complex:

?- @ true(dead(victim),
result(shoot_at(gun,victim),
result(wait,s))).

?- @ true(alive(victim),
result(shoot_at(gun,victim),
result(wait,s))).

The atom wait represents the assassin’s waiting for
the victim. In d-Prolog, the first query succeeds
and the second fails.

The reason we get the intuitive result is that d-
Prolog backward chains through rules whose bodies
involve times earlier than their heads. It is natural
to write rules this way since we conceive of cau-
sation as moving forward rather than backward in
time. The result is that defeasible rules applied at
earlier times are less likely to be defeated than rules
applied at later times. This applies particularly to
the persistence principle.

The Yale Shooting Problem is an important test
for a nonmonotonic formalism. Defeasible logic and
d-Prolog have not problem with it.

7 Utility predicates

A number of utility predicates have been incorpo-
rated into d-Prolog to assist users in developing d-
Prolog knowledge bases. I will discuss these briefly.

When Prolog reconsults a file, it reads the file
into memory while eliminating any clauses already
in memory for the predicates that occur in that
file. Most Prolog implementations assume that all
clauses for the same predicate will occur together
in the file. If a file containing only the clauses

f(1).
g.
f(2).

is reconsulted while memory is empty, the result
will be that only the clauses

g.
f(2).

will be in memory after the file is reconsulted. Be-
cause the clauses for the predicate f are separated
by a clause for g, most Prologs will treat the second
clause for f as if it is the first occurrence of a clause
for f. The clause f(1) that was just stored in mem-
ory is eliminated before the clause f(2) is stored
in memory. Thus, the Prolog programmer must be
sure that clauses for the same predicate occur to-
gether in files that may be reconsulted. This behav-
ior raises a special problem for d-Prolog. Consider
the following set of clauses:

f(1).
f(X) :- g(X).
neg f(2).
f(X) := h(X).
neg f(X) :^ j(X).
incompatible(f(X),k(X)).

From the perspective of d-Prolog, each of these is a
clause for the predicate f. But from the perspective
of Prolog, only the first and second are clauses for
f. The third is a clause for neg, the fourth is a
clause for :=, the fifth is a clause for :^, and the
last is a clause for incompatible.

d-Prolog’s reload reconsults a file in an intel-
ligent manner. It determines the predicates for
clauses from the perspective of d-Prolog, and it re-
members which predicates have been seen during
the current reload operation. It will not discard
clauses mistakenly even when clauses for the same
predicate actually are separated in the file.

reload also builds an internal dictionary of all
the predicates for which clauses are being added

6



to memory. This dictionary is used for a couple
of other functions. First, using dictionary as a
query will produce a list of all predicates loaded
using reload together with their arities. Second,
using contradictions as a query will initiate a
search for contradictory conclusions that can be
derived from the clauses in memory. To perform
this search, contradictions uses the internal dic-
tionary to construct the contradictory queries that
it tests. reload expects the file to be loaded or
reloaded to have the extension .dpl.

With the d-Prolog clauses for the predicate f
listed above, the query

?- listing(f).

will produce a list containing only the first two
clauses, i.e., those clauses that from the perspective
of Prolog have f as their predicate. The d-Prolog
query

?- dlisting(f).

will produce a list containing all the clauses in the
example.

The query

?- rescind(Predicate/Arity).

will remove from memory all facts, strict rules, de-
feasible rules, defeaters, and incompatibility state-
ments that have Predicate as their predicate. The
query

?- rescindall.

will rescind every predicate stored in the internal
d-Prolog dictionary, thus eliminating the entire d-
Prolog knowledge base from memory.

d-Prolog’s whynot is an explanatory facility. In
monotonic systems, there is always a single expla-
nation for why a particular statement is not deriv-
able: no rule supporting the statement is satisfied.
But in a nonmonotonic system, a statement may
not be derivable even though some rule supporting
the statement is satisfied. In the case of the Tweety
Triangle, we may want to know why the query

?- @ flies(tweety).

fails. We ask for an explanation with the query

?- whynot(flies(tweety)).

d-Prolog’s response is that while the rule

flies(tweety) := bird(tweety).

is satisfied, so is the rule

neg flies(tweety) := penguin(tweety).

Furthermore, the first rule is not superior to the
second rule. Thus, whynot explains how a rule has
been rebutted or undercut.

8 Continuing work

An earlier version of d-Prolog was used in a system
for selecting an appropriate forecasting method for
a business (Nute et al. 1990). Many of the fea-
tures described here were not included in that ver-
sion. Several intermediate versions resulted from
ad hoc changes to handle defeasible specificity, pre-
emption, etc. The current version is a new imple-
mentation recently finished. It has not yet been
used in any application although we have several
domains in mind for development.

A proof generator for defeasible logic is also cur-
rently under development. This system not only
tests to see whether queries succeed, but also con-
structs and displays a proof tree if the query suc-
ceeds. Finite defeasible theories without function
symbols are decidable (Nute 1990). The proof gen-
erator actually incorporates a decision procedure
for these theories.

References

Geffner, H. 1992. Default Reasoning: Causal and
Conditional Theories. MIT.

Hanks, S. and McDermott, D. 1987. Nonmonotonic
logic and temporal projection. Artificial
Intelligence 33:379–412.

Loui, R. 1987a. Response to Hanks and McDer-
mott: temporal evolution of beliefs and be-
liefs about temporal evolution. Cognitive
Science 11:303–317.

Loui, R. 1987b. Defeat among arguments: a sys-
tem of defeasible inference. Computational
Intelligence 3:100-106.

McCarthy, J. 1980. Circumscription — a form of
non-monotonic reasoning. Artificial Intel-
ligence 13:27–39.

McCarthy, J. 1986. Applications of circumscription
to formalizing common sense knowledge.
Artificial Intelligence 28:89–116.

7



McDermott, D. 1987. We’ve been framed: or why
AI is innocent of the frame problem. In Z.
Pylyshyn (ed.), The Robot’s Dilemma: the
Frame Problem in Artificial Intelligence.
Ablex Publishing Company, Norwood, NJ:113–
122.

McDermott, D. and Doyle, J. 1980. Non-monotonic
logic I. Artificial Intelligence 13:41–72.

Moore, R. 1984. Possible-worlds semantics for au-
toepistemic logic. Proceedings of the 1984
Non-monotonic Reasoning Workshop. AAAI,
Menlo Park, California.

Nute, D. 1991 A decidable quantified defeasible logic.
Proceedings of the 9th International Congress
on Logic, Methodology, and the Philosophy
of Science, Uppsala, Sweden, August 1991,
in press.

Nute, D. 1992. Basic defeasible logic. In L. Fariñas
del Cerro and M. Penttonen (eds.), Inten-
sional Logics for Programming, Oxford Uni-
versity Press:125–154.

Nute, D., R. Mann, and B. Brewer. 1990. Controlling
expert system recommendations with de-
feasible logic. Decision Support Systems
6:153–64.

Pollock, J. 1991. A theory of defeasible reasoning.
International Journal of Intelligent Systems
6:33–54.

Reiter, R. 1980. A logic for default reasoning. Ar-
tificial Intelligence 13:81–132.

8


