Research Report AI-1989-01
GULP 2.0: An Extension of

Prolog for Unification-Based Grammar
Michael A. Covington

Advanced Computational Methods Center
University of Georgia
Athens, Georgia 30602

January 1989

Abstract

ABSTRACT: A simple extension to Prolog facilitates implemen-
tation of unification-based grammars (UBGs) by adding a new no-
tational device, the feature structure, whose behavior emulates graph
unification. For example, a:b..c:d denotes a feature structure in which
a has the value b, ¢ has the value d, and the values of all other fea-
tures are unspecified. A modified Prolog interpreter translates feature
structures into Prolog terms that unify in the desired way. Thus, the
extension is purely syntactic, analogous to the automatic translation
of “abc” to [97,98,99] in Edinburgh Prolog. The extended language
is known as GULP (Graph Unification Logic Programming); it is as
powerful and concise as PATR-II (Shieber 1986a,b) and other gram-
mar development tools, while retaining all the versatility of Prolog.
GULP can be used with grammar rule notation (DCGs) or any other
parser that the programmer cares to implement. Besides its uses in
natural language processing, GULP provides a way to supply keyword
arguments to any procedure.

1 Introduction

A number of software tools have been developed for implementing unification-
based grammars, among them PATR-II (Shieber 1986a,b), D-PATR (Kart-
tunen 1986a), PrAtt (Johnson and Klein 1986), and AVAG (Sedogbo 1986).
This paper describes a simple extension to the syntax of Prolog that serves
the same purpose while making a much less radical change to the language.
Unlike PATR-II and similar systems, this system treats feature structures as
first-class objects that appear in any context, not just in equations.! Further,
feature structures can be used not only in natural language processing, but
also to pass keyword arguments to any procedure.

The extension is known as GULP (Graph Unification Logic Program-
ming). It allows the programmer to write a:b..c:d to stand for a feature
structure in which feature a has the value b, feature ¢ has the value d,
and all other features are uninstantiated.? The interpreter translates feature
structures written in this notation into ordinary Prolog terms that unify in
the desired way. Thus, this extension is similar in spirit to syntactic devices
already in the language, such as writing “abc” for [97,98,99] or writing
[a,b,c] for .(a,.(b,.(c,nil))).

GULP can be used with grammar rule notation (definite clause grammars,
DCGs) or with any parser that the programmer cares to implement in Prolog.

2 What is unification-based grammar?

2.1 Unification-based theories

Unification-based grammar (UBG) comprises all theories of grammar in which
unification (merging) of feature structures plays a prominent role. As such,
UBG is not a theory of grammar but rather a formalism in which theories
of grammar can be expressed. Such theories include functional unification

!The first version of GULP (Covington 1987) was developed with support from Na-
tional Science Foundation Grant IST-85-02477. I want to thank Franz Guenthner, Rainer
Bauerle, and the other researchers at the Seminar fiir natiirlich-sprachliche Systeme, Uni-
versity of Tubingen, for their hospitality and for helpful discussions. The opinions and
conclusions expressed here are solely those of the author.

2The use of the colon makes the Quintus Prolog and Arity Prolog module systems
unavailable; so far, this has not caused problems.

grammar, lexical-functional grammar (Kaplan and Bresnan 1982), general-
ized phrase structure grammar (Gazdar et al. 1986), head-driven phrase
structure grammar (Pollard and Sag 1987), and others.

UBGs use context-free grammar rules in which the nonterminal symbols
are accompanied by sets of features. The addition of features increases the
power of the grammar so that it is no longer context-free; indeed, in the worst
case, parsing with such a grammar can be NP-complete (Barton, Berwick,
and Ristad 1987:93-96).

However, in practice, these intractable cases are rare. Theorists restrain
their use of features so that the grammars, if not actually context-free,
are close to it, and context-free parsing techniques are successful and effi-
cient. Joshi (1986) has described this class of grammars as “mildly context-
sensitive.”

2.2 Grammatical features

Grammarians have observed since ancient times that each word in a sentence
has a set of attributes, or features, that determine its function and restrict
its usage. Thus:

The dog barks.
category:determiner category:noun category:verb
number:singular number:singular

person:3rd
tense:present

The earliest generative grammars of Chomsky (1957) and others ignored
all of these features except category, generating sentences with context-free
phrase- structure rules such as

sentence --> noun phrase + verb phrase

noun phrase --> determiner + noun

plus transformational rules that rearranged syntactic structure. Syntactic
structure was described by tree diagrams (Figure 1).*> Number and tense

3Figures are printed at the end of this document

3

markers were treated as separate elements of the string (e. g., boys = boy +
s). “Subcategorization” distinctions, such as the fact that some verbs take
objects and other verbs do not, were handled by splitting a single category,
such as verb, into two (verb,ansitive A0d VErbiniransitive)-

But complex, cross-cutting combinations of features cannot be handled in
this way, and Chomsky (1965) eventually attached feature bundles to all the
nodes in the tree (Figure 2). His contemporaries accounted for grammatical
agreement (e. g., the agreement of the number features of subject and verb)
by means of transformations that copied features from one node to another.
This remained the standard account of grammatical agreement for many
years.

But feature copying is unnecessarily procedural. It presumes, unjustifi-
ably, that whenever two nodes agree, one of them is the source and the other
is the destination of a copied feature. In practice, the source and destination
are hard to distinguish. Do singular subjects require singular verbs, or do
singular verbs require singular subjects? This is an empirically meaningless
question. Moreover, when agreement processes interact to combine features
from a number of nodes, the need to distinguish source from destination
introduces unnecessary clumsiness.

2.3 Unification-based grammar

Unification-based grammar attacks the same problem non-procedurally, by
stating constraints on feature values. For example, the rule

[2.3a] PP -—> P NP
[case:acc]

says that in a prepositional phrase, the NP must be in the accusative case.
More precisely, rule [2.3a] says the feature structure

[case:acc]

must be unified (merged) with whatever features the NP already has. If the
NP already has case:acc, all is well. If the NP has no value for case, it
acquires case:acc. But if the NP has case with some value other than acc,
the unification fails and the rule cannot apply.

Agreement is handled with variables, as in the rule

NP VP
[2.3b] § — [peTson.'X] [peTson.'X]

number:Y number:Y

which requires the NP and VP to agree in person and number. Here X and Y
are variables; person:X merges with the person feature of both the NP and
the VP, thereby ensuring that the same value is present in both places. The
same thing happens with number.

Strictly speaking, the category label (S, NP, VP, etc.) is part of the
feature structure. Thus,

NP
[case:acc]

is short for:

case;ace

[categOTy:NP]

In practice, however, the category label usually plays a primary role in pars-
ing, and it is convenient to give it a special status.

Grammar rules can alternatively be written in terms of equations that
the feature values must satisfy. In equational notation, rules [2.3a] and [2.3D]
become:

[2.3c] PP --> P NP NP case = acc
[2.3d] S --> NP VP NP person = VP person
NP number = VP number

or even, if the category label is to be treated as a feature,

[2.3e] X -->Y7Z X category = PP
Y category = P
Z category = NP
Z case = acc

[2.3f] X -->Y7Z X category = S

<

category = NP
Z category = VP

5

Y person = Z person
Y number = Z number

where X, Y, and Z are variables. Equations are used in PATR-II, PrAtt, and
other implementation tools, but not in the system described here.

The value of a feature can itself be a feature structure. This makes it
possible to group features together to express generalizations. For instance,
one can group syntactic and semantic features together, creating structures
such as:

case:acc
syn:
gender:masc

pred:MAN
sem: | countable:yes
anumate:yes

Then a rule can copy the syntactic or semantic features en masse to another
node, without enumerating them.

2.4 A sample grammar

Features provide a powerful way to pass information from one place to an-
other in a grammatical description. The grammar in Figure 3 is an example.
It uses features not only to ensure the grammaticality of the sentences gener-
ated, but also to build a representation of the meaning of the sentence. Every
constituent has a sem feature representing its meaning. The rules combine
the meanings of the individual words into predicate-argument structures rep-
resenting the meanings of all of the constituents. The meaning of the sentence
is represented by the sem feature of the topmost S node.

Like all the examples given here, this grammar is intended only as a
demonstration of the power of unification-based grammar, not as a viable
linguistic analysis. Thus, for simplicity, the internal structure of the NP is
ignored and the proposal to group syntactic features together is abandoned.

To see how the grammar works, consider how the sentence Mazx sees Bill
would be parsed bottom-up. The process is shown in Figure 4. First rules
[c], [d], and [e] supply the features of the individual words (Figure 4a). Next
the bottom-up parser attempts to build constituents.

By rule [b], sees and Bill constitute a VP (Figure 4b). At this step,
construction of a semantic representation begins. The sem feature of the VP
has as its value another feature structure which contains two features: pred,
the semantics of the verb, and arg2, the semantics of the direct object.

Rule [b] also assigns the feature case:acc to Bill; this has no effect on
the form of the noun but would be important if a pronoun had been used
instead.

Finally, rule [a] allows the resulting NP and VP to be grouped together
into an S (Figure 4c). This rule assigns nominative case to Maz and combines
the semantics of the NP and VP to construct the sem feature of the S node,
thereby accounting for the meaning of the complete sentence.

It would be equally feasible to parse top-down. Parsing would then begin
with an S node, expanded to NP and VP by rule [a]. The NP would then
expand to Maz using rule [d], thereby supplying a value for sem of NP, and
hence also for sem:argl of S. Similarly, expansion of the VP would supply
values for the remaining features of S.

Crucially, it is possible (and necessary) to match variables with each other
before giving them values. In a top-down parse, we know that sem:arg2 of S
will have the same value as sem:arg2 of VP long before we know what this
value is to be.

2.5 Functions, paths, re-entrancy, and graphs

A feature can be viewed as a partial function which, given a feature struc-
ture, may or may not yield a value. For instance, given the structure

case:acc
syn:
gender:masc

sem:MAN

the feature sem yields the value MAN, the feature syn yields another fea-
ture structure, and the feature tense yields no value (it is a case in which
the partial function is undefined).

A path is a series of features that pick out an element of a nested fea-
ture structure. Formally, a path is the composition of the functions just
mentioned. For example, the path syn:case is what you get by applying
the function case to the value of the function syn; applied to the structure

above, syn: case yields the value acc. Path notation provides a way to refer
to a single feature deep in a nested structure without writing nested brackets.
Thus one can write rules such as

P - P NP
[syn:case:acc]

or, in equational form,
P-->PNP NP syn case = acc

Feature structures are re-entrant. This means that features are like pointers;
if two of them have the same value, then they point to the same object, not
to two similar objects. If this object is subsequently modified (e. g., by giv-
ing values to variables), the change will show up in both places. Thus the
structure

a:h
c:h
e:d
is more accurately represented as something like:
a —Db
C _
e —d

There is only one b, and a and ¢ both point to it.

Re-entrant feature structures can be formelized as directed acyclic graphs
(DAGs) as shown in Figure 5. Features are arcs and feature values are the
vertices or subgraphs found at the ends of the arcs. A path is a series of arcs
chained together.

Re-entrancy follows from the way variables behave in a grammar. All
occurrences of the same variable take on the same value at the same time.
(As in Prolog, like-named variables in separate rules are not considered to be
the same variable.) The value may itself contain a variable that will later get
a value from somewhere else. This is why bottom-up and top-down parsing
work equally well.

2.6 Unification

Our sample grammar relies on the merging of partially specified feature struc-
tures. Thus, the subject of the sentence gets case from rule [a] and semantics
from rule [d] or [e]. This merging can be formalized as wnification. The
unifier of two feature structures A and B is the smallest feature structure C
that contains all the information in both A and B.

Feature structure unification is equivalent to graph unification, i. e., merg-
ing of directed acyclic graphs, as defined in graph theory. The unifier of two
graphs is the smallest graph that contains all the nodes and arcs in the graphs
being unified. This is similar but not identical to Prolog term unification;
crucially, elements of the structure are identified only by name, not (as in
Prolog) by position.

Formally, the unification of feature structures A and B (giving C) is de-
fined as follows:

1. Any feature that occurs in A but not B, or in B but not A, also occurs
in C with the same value.

2. Any feature that occurs in both A and B also occurs in C, and its value
in C'is the unifier of its values in A and B.

Feature values, in turn, are unified as follows:

a If both values are atomic symbols, they must be the same atomic sym-
bol, or else the unification fails (the unifier does not exist).

b A variable unifies with any object by becoming that object. All occur-
rences of that variable henceforth represent the object with which the
variable has unified. Two variables can unify with each other, in which
case they become the same variable.

¢ If both values are feature structures, they unify by applying this process
recursively.

unify giving:

[azh
c:d
| e:f

Likewise, [a:X] and [a:b] unify, instantiating X to the value b; and

[a:X a:c
b:e] and [b:Y]
unify by instantiating both X and Y to c.
As in Prolog, unification is not always possible. Specifically, if A and
B have different (non-unifiable) values for some feature, unification fails. A

grammar rule requiring A to unify with B cannot apply if A and B are not
unifiable.

Unification-based grammars rely on failure of unification to rule out un-
grammatical sentences. Consider, for example, why our sample grammar
generates Maz sees me but not Me sees Mazx. In Max sees me, both rule [b]
and rule [f] specify that me has the feature case:acc, giving the structure
shown in Figure 6.

However, in Me sees Mazx, the case of me raises a conflict. Rule [a] specifies
case:nom and rule [f] specifies case:acc. These values are not unifiable;
hence the specified merging of feature structures cannot go through, and the
sentence is not generated by the grammar.

2.7 Declarativeness

Unification-based grammars are declarative, not procedural. That is, they
are statements of well-formedness conditions, not procedures for generating
or parsing sentences. That is why, for example, sentences generated by our
sample grammar can be parsed either bottom-up or top-down.

This declarativeness comes from the fact that unification is an order-
independent operation. The unifier of A, B, and C is the same regardless of
the order in which the three structures are combined. This is true of both
graph unification and Prolog term unification.

The declarative nature of UBGs is subject to two caveats. First, although
unification is order-independent, particular parsing algorithms are not. Re-

10

call that grammar rules of the form

A-->AB
cannot be parsed top-down, because they lead to infinite loops (“To parse
an A, parse an A and then...”). Now consider a rule of the form
A -—> A B
[f:X] [£:Y]

If X and Y have different values, then top-down parsing works fine; if either X
or Y does not have a value at the time the rule 1s mvoked, top-down parsing
will lead to a loop. This shows that one cannot simply give an arbitrary UBG
to an arbitrary parser and expect useful results; the order of instantiation
must be kept in mind.

Second, many common Prolog operations are not order-independent, and
this must be recognized in any implementation that allows Prolog goals to
be inserted into grammar rules. Obviously, the cut (!) interferes with order-
independence by blocking alternatives that would otherwise succeed. More
commonplace predicates such as write, is, and == lack order-independence
because they behave differently depending on whether their arguments are
instantiated at the time of execution. Colmerauer’s Prolog II (Giannesini
et al. 1986) avoids some of these difficulties by allowing the programmer to
postpone tests until a variable becomes instantiated, whenever that may be.

2.8 Building structures and moving data

Declarative unification-based rules do more than just pass information up
and down the tree. They can build structure as they go. For example, the
rule

VP v NP
[sem: [Z:;d;(]] - [sem:X] {sem:Y]

builds on the VP node a pred-arg structure that is absent on the V and
NP.

Unification can pass information around in directions other than along
the lines of the tree diagram. This is done by splitting a feature into two sub-

11

features, one for input and the other for output. The inputs and outputs can
then be strung together in any manner.
Consider for example the rule:

S NP VP
mn:X1 — X1 X2
[sem: [out:Xé’]] [sem: [out:XQ]] [sem: [out:Xé’]]
This rule assumes that sem of the S has some initial value (perhaps an empty
list) which is passed into X1 from outside. X1 is then passed to the NP, which
modifies it in some way, giving X2, which is passed to the VP for further mod-
ification. The output of the VP is X3, which becomes the output of the S.
Such a rule is still declarative and can work either forward or backward;

that is, parsing can still take place top-down or bottom-up. Further, any node
in the tree can communicate with any other node via a string of input and
output features, some of which simply pass information along unchanged.
The example in section 4.2 below uses input and output features to undo
unbounded movements of words. Johnson and Klein (1985, 1986) use in
and out features to perform complex manipulations of semantic structure;

see section 4.3 (below) for a GULP reconstruction of part of one of their
programs.

3 The GULP translator

3.1 Feature structures in GULP

The key idea of GULP is that feature structures can be included in Prolog
programs as ordinary data items. For instance, the feature structure

abh
c:d
is written:

a:b..c:d

and GULP translates a:b. .c:d into an internal representation (called a value
list) in which the a position is occupied by b, the ¢ position is occupied by
d, and all other positions, if any, are uninstantiated.

12

This is analogous to the way ordinary Prolog translates strings such as
abc’’ into lists of ASCII codes. The GULP programmer always uses feature
structure notation and never deals directly with value lists. Feature struc-
tures are order-independent; the translations of a:b..c:d and of c:d. .a:b
are the same.

Nesting and paths are permitted. Thus, the structure

[3K3

a:b

o d:e
L | f
is written a:b..c:(d:e..f:g).* The same structure can be written as

[asb
c:d:e
| c:fzg
which GULP renders as a:b..c:d:e..c:f:g.
GULP feature structures are data items — complex terms — not state-
ments or operations. They are most commonly used as arguments. Thus,
the rule

S NP
person:X — | person:X lfsVPperson:Xnumber:Y
number:Y number:Y

can be written in DCG notation, using GULP, as:

s(person:X. .number:Y) -->
np(person:X. .number:Y),
vp(person:X. .number:Y).

They can also be processed by ordinary Prolog predicates. For example, the
predicate

nonplural (number:X) :- nonvar(X), X \= plural.

succeeds if and only if its argument is a feature structure whose number
feature is instantiated to some value other than plural.

1 Arity Prolog 4.0 requires a space before the (.

13

Any feature structure unifies with any other feature structure unless pre-
vented by conflicting values. Thus, the internal representations of a:b..c:d
and c:d..e:f unify, giving a:b..c:d..e:f. But a:b does not unify with
a:d because b and d do not unify with each other.

3.2 GULP syntax

Formally, GULP adds to Prolog the operators ‘:” and ‘..’ and a wide range
of built-in predicates. The operator ‘:’ joins a feature to its value, which
itself can be another feature structure. Thus in c:d:e, the value of c is d:e.

A feature-value pair is the simplest kind of feature structure. The opera-
tor ‘. .” combines feature-value pairs to build more complex feature structures.
This is done by simply unifying them. For example, the internal representa-
tion of a:b. .c:d is built by unifying the internal representations of a:b and
c:d.

This fact can be exploited to write “improperly nested” feature structures.
For example,

5

a:b..c:X..c:4:Y..Z
denotes a feature structure in which:

the value of a is b,
the value of ¢ unifies with X,
the value of ¢ also unifies with 4:Y, and

the whole structure unifies with Z.

Both operators, ‘:” and ‘. .’, are right-associative; that is, a:b:c = a:(b:c)
and A..B..C = A..(B..C). Arity Prolog 4.0 requires an intervening space
when ‘:7 or ‘.. occurs adjacent to a left parenthesis; other Prologs lack this
restriction.

3.3 Built-in predicates

GULP 2.0 is an ordinary Prolog environment with some built-in predicates
added. The most important of these is 1oad, which loads clauses into memory

5For compatibility with earlier versions, ‘..’ can also be written ‘::’.

14

through the GULP translator. (A consult or reconsult would not translate
feature structures into their internal representations.) Thus,

7- load myprog.
loads clauses from the file MYPROG.GLP.

Like reconsult, load clears away any pre-existing clauses for a predicate
when new clauses for that predicate (with the same arity) are first encoun-
tered in a file. However, load does not require the clauses for a predicate
to be contiguous, so long as they all occur in the same file. A program can
consist of several files that are loaded into memory together.

Another predicate, ed, calls a full-screen editor and then loads the file.
Without an argument, ed or load uses the same file name as on the most
recent invocation of either ed or load.

Other special predicates are used within the program. GULP 1.1 required
a declaration such as

g_features([gender,number,case,person,tense]).

declaring all feature names before any were used. This declaration is optional
in GULP 2.0. If present, it establishes the order in which features will ap-
pear whenever a feature structure is output, and it can be used to optimize
the program by putting frequently used features at the beginning. Further,
whether or not the programmer includes a g_features declaration, GULP
2.0 maintains in memory an up-to-date g_features clause with a list of all
the features actually used, in the order in which they were encountered.

The predicate g_translate/2 interconverts feature structures and their
internal representations. This makes it possible to process, at runtime, fea-
ture structures in GULP notation rather than translated form. For instance,
if X is a feature structure, then g_translate(Y,X), write(Y) will display it
in GULP notation.

The predicate display_feature_structure outputs a feature structure,
not in GULP notation, but in a convenient tabular format, thus:

syn: case: acc
gender: masc

sem: pred: MAN
countable: yes
animate: yes

This is similar to traditional feature structure notation, but without brackets.

15

3.4 Internal representation

The nature of value lists, which represent feature structures internally, is best
approached by a series of approximations. The nearest Prolog equivalent to
a feature structure is a complex term with one position reserved for the value
of every feature. Thus

number:plural
person:third
gender:fem

could be represented as x(plural,third,fem) or [plural,third,fem] or
the like. It is necessary to decide in advance which argument position corre-
sponds to each feature.

A feature structure that does not use all of the available features is equiv-
alent to a term with anonymous variables; thus

person:third

would be represented as x(_,third,_) or [_,third,_].

Structures of this type simulate graph unification in the desired way.
They can be recursively embedded. Further, structures built by instantiat-
ing Prolog variables are inherently re-entrant, since an instantiated Prolog
variable is actually a pointer to the memory representation of its value.

All the feature structures in a program must be unifiable unless they
contain conflicting values. Accordingly, if fifteen features are used in the
program, every value list must reserve positions for all fifteen. One option
would be to represent value lists as 15-argument structures:

tense:present => X(_,_,_,_,present, _,_, _, s s_r_r_>_)

This obviously wastes memory. A better solution would be to use lists; a
list with an uninstantiated tail unifies with any longer list. The improved
representation is:

tense:present => [_,_,_,_,present]|_]

By putting frequently used features near the beginning, this representation
can save a considerable amount of memory as well as reducing the time
needed to do unifications. Further, lists with uninstantiated tails gain length

16

automatically as further elements are filled in; unifying [a,b,c|_] with
[_,_,_,_,el_]gives [a,b,c,_,el|_].

If most of the lists in the program have uninstantiated tails, the pro-
gram can be simplified by requiring all lists to have uninstantiated tails.
Any process that searches through a list will then need to check for only
one terminating condition (remainder of list uninstantiated) rather than two
(remainder of list uninstantiated or empty).

But the GULP internal value list structure is not an ordinary list. If it
were, translated feature structures would be confused with ordinary Prolog
lists, and programmers would fall victim to unforeseen unifications. It would
also be impossible to test whether a term is a value list.

Recall that Prolog lists are held together by the functor *.’. That is,

[a,b,c|X] = a,.(,.(c,XD))

To get a distinct type of list, all we need to do is substitute another functor
for the dot. GULP uses g_/2. (In fact, all functors beginning with g_ are
reserved by GULP for internal use.) So if tense is the fifth feature in the
canonical order, then

tense:present => g_(_,g_(_,g_(_,g_(_,g_(present,_)))))

It doesn’t matter that this looks ugly; the GULP programmer never sees it.

One more refinement (absent before GULP version 2.0) is needed. We
want to be able to translate value lists back into feature structure notation.
For this purpose we must distinguish features that are unmentioned from
features that are merely uninstantiated. That is, we do not want tense:X
to turn into an empty feature structure just because X is uninstantiated. It
may be useful to know, during program testing, that X has unified with some
other variable even if it has not acquired a value. Thus, we want to record,
somehow, that the variable X was mentioned in the original feature structure
whereas the values of other features (person, number, etc.) were not.

Accordingly, g_/1 (distinct from g_/2) is used to mark all features that
were mentioned in the original structure. If person is second in the canonical
order, and tense is fifth in the canonical order (as before), then

tense:present..person:X =>
g_(_,g_(g_(X),g_(_,g_(_,g_(g_(present),_)

17

And this is the representation actually used by GULP. Note that the use of
g_/1does not interfere with unification, because g_ (present) will unify both
with g_(Y) (an explicitly mentioned variable) and with an empty position.

3.5 How translation is done

GULP loads a program by reading it, one term a a time, from the input file,
and translating all the feature structures in each term into value lists. The
term is then passed to the built-in predicate expand_term, which translates
grammar rule (DCG) notation into plain Prolog. The result is then asserted
into the knowledge base. There are two exceptions: a term that begins with
‘-7 is executed immediately, just as in ordinary Prolog, and a g_features
declaration is given special treatment to be described below.

To make translation possible, GULP maintains a stored set of forward
translation schemas, plus one backward schema. For example, a program
that uses the features a, b, and ¢ (encountered in that order) will result in
the creation of the schemas:

g_forward_schema(a,X,g_(X,_)).
g_forward_schema(b,X,g_(_,g_(X,_))).
g_forward_schema(c,X,g_(_,g_(_,g_(X,_)))).

g_backward_schema(a:X..b:Y..c:Z,g_(X,g_(Y,g_(Z,.)))).

Each forward schema contains a feature name, a variable for the feature
value, and the minimal corresponding value list. To translate the feature
structure a:xx..b:yy..c:zz, GULP will mark each of the feature values
with g_(...), and then call, in succession,

g_forward_schema(a,g_(xx), ...),
g_forward_schema(b,g_(yy), ...),
g_forward_schema(c,g_(zz), ...)

and unify the resulting value lists. The result will be the same regardless of
the order in which the calls are made. To translate a complex Prolog term,
GULP first converts it into a list using ‘=. ., then recursively translates all
the elements of the list except the first, then converts the result back into a
term.

18

Backward translation is easier; GULP simply unifies the value list with
the second argument of g_backward_schema, and the first argument imme-
diately yields a rough translation. It is rough in two ways: it mentions all
the features in the grammar, and it contains g_(. . .) marking all the feature
values that were mentioned in the original feature structure. The finished
translation is obtained by discarding all features whose values are not marked
by g_(...), and removing the g_(...) from values that contain it.

The translation schemas are built automatically. Whenever a new feature
is encountered, a forward schema is built for it, and the pre-existing backward
schema, if any, is replaced by a new one. A g_features declaration causes
the immediate generation of schemas for all the features in it, in the order
given. In addition, GULP maintains a current g_features clause at all
times that lists all the features actually encountered, whether or not they
were originally declared.

4 GULP in practical use

4.1 A simple definite clause grammar

Figure 7 shows the grammar from Figure 3 implemented with the definite
clause grammar (DCG) parser that is built into Prolog. Each nonterminal
symbol has a GULP feature structure as its only argument.

Parsing is done top-down. The output of the program reflects the feature
structures built during parsing. For example:

7- testl.

[max,sees,bill] (String being parsed)

sem: pred: SEES (Displayed feature structure)
argl: BILL
arg2: MAX

Figure 8 shows the same grammar written in a more PATR-like style. Instead
of using feature structures in argument positions, this program uses variables
for arguments, then unifies each variable with appropriate feature structures
as a separate operation. This is slightly less efficient but can be easier to
read, particularly when the unifications to be performed are complex.

19

In this program, the features of np and vp are called NPfeatures and
VPfeatures respectively. More commonly, the features of np, vp, and so on
are in variables called NP, VP, and the like. Be careful not to confuse upper-
and lower-case symbols.

The rules in Figure 8 could equally well have been written with the uni-
fications before the constituents to be parsed. That is, we can write either

s(Sfeatures) --> np(NPfeatures), vp(VPfeatures),
{ Sfeatures = ... }.

or

s(Sfeatures) --> { Sfeatures = ... },
np(NPfeatures), vp(VPfeatures).

Because unification is order-independent, the choice affects efficiency but not
correctness. The only exception is that some rules can loop when written
one way but not the other. Thus

8(S1) —--> s(82), { S1 = x:a, 82 = x:b }.
loops, whereas
8(S1) --> { S1 = x:a, S2 = x:b }, 8(582).

does not, because in the latter case S2 is instantiated to a value that must
be distinct from S1 before s(S2) is parsed.

4.2 A hold mechanism for unbounded movements

Unlike a phrase-structure grammar, a unification-based grammar can handle
unbounded movements. That is, it can parse sentences in which some element
appears to have been moved from its normal position across an arbitrary
amount of structure.

Such a movement occurs in English questions. The question-word (who,
what, or the like) always appears at the beginning of the sentence. Within
the sentence, one of the places where a noun phrase could have appeared is
empty:

20

The boy said the dog chased the cat.
What did the boy say _ chased the cat? (The dog.)
What did the boy say the dog chased _7 (The cat.)

Ordinary phrase-structure rules cannot express the fact that only one noun
phrase is missing. Constituents introduced by phrase-structure rules are
either optional or obligatory. If noun phrases are obligatory, they can’t be
missing at all, and if they are optional, any number of them can be missing
at the same time.

Chomsky (1957) analyzed such sentences by generating what in the po-
sition of the missing noun phrase, then moving it to the beginning of the
sentence by means of a transformation. This is the generally accepted anal-
ysis.

To parse such sentences, one must undo the movement. This is achieved
through a hold stack. On encountering what, the parser does not parse it,
but rather puts it on the stack and carries it along until it is needed. Later,
when a noun phrase is expected but not found, the parser can pop what off
the stack and use it.

The hold stack is a list to which elements can be added at the beginning.
Initially, its value is [| (the empty list). To parse a sentence, the parser must:

1. Pass the hold stack to the NP, which may add or remove items.

2. Pass the possibly modified stack to the VP, which may modify it fur-
ther.

In traditional notation, the rule we need is:

S NP VP
s Hl — wn: H1 wn: H2
[hOld' [out: Hé’]] [hOld' [out: HQ]] [hOld' [out: Hé’]]
Here hold:in is the stack before parsing a given constituent, and hold:out
is the stack after parsing that same constituent. Notice that three different
states of the stack — H1, H2, and H3 — are allowed for.
Figure 9 shows a complete grammar built with rules of this type. There

are two rules expanding S. One is the one above (S —; NP VP). The other
one accepts what did at the beginning of the sentence, places what on the

stack, and proceeds to parse an NP and VP. Somewhere in the NP or VP —
or in a subordinate S embedded therein — the parser will use the rule

21

np(NP) --> []1, { NP = hold: (in:[what|H1]..out:H1) }.

thereby removing what from the stack.

4.3 Building complex semantic structures

Figure 10 shows a GULP reimplementation of a program by Johnson and
Klein (1986) that makes extensive use of in and out features to pass infor-
mation around the parse tree. Johnson and Klein’s key insight is that the
logical structure of a sentence is largely specified by the determiners. For in-
stance, A man saw a donkey expresses a simple proposition with universally
quantified variables, but Fvery man saw a donkey expresses an “if-then” re-
lationship (If X is a man then X saw a donkey). On the syntactic level, every
modifies only man, but semantically, it gives the entire sentence a different
structure.

Accordingly, Johnson and Klein construct their grammar so that almost
all the semantic structure is built by the determiners. Each determiner must
receive, from elsewhere in the sentence, semantic representations for its scope
and its restrictor. The scope of a determiner is the main predicate of the
clause, and the restrictor is an additional condition imposed by the NP to
which the determiner belongs. For instance, in Every man saw a donkey, the
determiner every has scope saw a donkey and restrictor man.

Figure 10 shows a reimplementation, in GULP, of a sample program John-
son and Klein wrote in PrAtt (a different extension of Prolog). The semantic
representations built by this program are those used in Discourse Repre-
sentation Theory (Kamp, 1981; Spencer-Smith, 1987). The meaning of a
sentence or discourse is represented by a discourse representation structure

(DRS) such as:
[1,2,man(1) ,donkey(2),saw(1,2)]

Here 1 and 2 stand for entities (people or things), end man(1), donkey(2),
and saw(1,2) are conditions that these entities must meet. The discourse is
true if there are two entities such that 1 is a man, 2 is a donkey, and 1 saw
2. In other words, “A man saw a donkey.” The order of the list elements
is insignificant, and the program builds the list backward, with indices and
conditions mixed together.

A DRS can contain other DRSes embedded in a variety of ways. In
particular, one of the conditions within a DRS can have the form

22

DRS1 > DRS2

which means: “This condition is satisfied if for each set of entities that satisfy
DRS1, it is also possible to satisfy DRS2.” For example:

[1,man(1), [2,donkey(2)] > [saw(1,2)]]

“There is an entity 1 such that 1 is a man, and for every entity 2 that is a
donkey, 1 saw 2.” That is, “Some man saw every donkey.” Again,

[[1,man(1)] > [2,donkey(2)] 1]

means “every man saw a donkey” — that is, “for every entity 1 such that 1
is a man, there is an entity 2 which is a donkey.”
Parsing a sentence begins with the rule:

8(S) —=> { S = sem:A, NP = sem:A,
S = syn:B, VP = syn:B,
NP = sem:scope:C, VP = sem:C,
VP = syn:argl:D, NP = syn:index:D }, np(NP), vp(VP).

This rule stipulates the following things:
(1) An S consists of an NP and a VP.

(2) The semantic representation of the S is the same as that of the NP,
i. e., is built by the rules that parse the NP.

(3) The syntactic feature structure (syn) of the S is that of the NP. Cru-
cially, this contains the indices of the subject (argl) and object (arg2).

(4) The scope of the NP (and hence of its determiner) is the semantic repre-
sentation of the VP.

e index ol the verb’s subject (argl) i1s that of the mentione
3) The ind f th b’ bj gl) is th f the NP ioned
in this rule.

Other rules do comparable amounts of work, and space precludes explaining
them in detail here. (See Johnson and Klein 1985, 1986 for further expla-
nation.) By unifying appropriate in and out features, the rules perform a
complex computation in an order-independent way.

23

4.4 Bottom-up parsing

GULP is not tied to Prolog’s built-in DCG parser. It can be used with any
other parser implemented in Prolog. Figure 11 shows how GULP can be used
with the BUP bottom-up parser developed by Matsumoto et al. (1986).5

In bottom-up parsing, the typical question is not “How do I parse an
NP?” but rather, “Now that I've parsed an NP, what do I do with it?” BUP
puts the Prolog search mechanism to good use in answering questions like
this.

During a BUP parse, two kinds of goals occur. A goal such as

?7- np(s,NPf,Sf,[chased,the,cat],[]).

means: “An NP has just been accepted; its features are contained in NPf.
This occurred while looking for an S with features Sf. Immediately after
parsing the NP, the input string was [chased,the,cat]. After parsing the
S, it will be [].”

The other type of goal is

7- goal(vp,VPf, [chased,the,cat],[]).

This means “Parse a VP with features VP{, starting with the input string
[chased,the,cat] and ending up with [|.” This is like the DCG goal

7- vp(VPf, [chased,the,cat],[]).

except that the parsing is to be done bottom-up.
To see how these goals are constructed, imagine replacing the top-down
parsing rule

s --> np, vp.
with the bottom-up rule
np, vp -=> s.

This rule should be used when the parser is looking for a rule that will tell
it how to use an NP it has just found. So np(...) should be the head of the
Prolog clause. Ignoring feature unifications, the clause will be:

6Tt has been suggested that a combination of GULP and BUP should be known as
BURP. This suggestion has not been acted upon.

24

np(G,NPf,Gf,S1,S3) :- goal(vp,VPf,S1,S2),
s(G,s8f,Gf,S82,83).

That is: “Having just found an NP with features NPf, parse a VP with
features VPf. You will then have completed an S, so look for a clause that
tells you what to do with it.”

Here S1, S2, and S3 represent the input string initially, after parsing the
VP, and after completing the S. G is the higher constituent that was being
sought when the NP was found, and Gf contains its features. If, when the S
is completed, it turns out that an S was being sought (the usual case), then
execution can finish with the em terminal rule

s(s,F,F,X,X).

Otherwise another clause for s(...) must be searched for.
Much of the work of BUP is done by the goal-forming predicate goal,
defined thus:

goal(G,Gf,S81,83) :-
word (W,Wf,S1,582),
NewGoal =.. [W,G,Wf,Gf,S2,83],
call (NewGoal) .

That is (ignoring features): “To parse a G in input string S1 leaving the re-
maining input in S3, first accept a word, then construct a new goal depending
on its category (W).” For example, the query

7- goal(s,Sf, [the,dog,barked],S3).
will first call
7- word (W,Wf, [the,dog,barked], [dog,barked]) .

thereby instantiating W to det and Wf to the word’s features, and then con-
struct and call the goal

7- det(s,Wf,Sf, [dog,barked],S3).

That is: “I've just completed a det and am trying to parse an s. What do I
do next?” A rule such as

det, n --> np

(or rather its BUP equivalent) can be invoked next, to accept another word
(a noun) and complete an NP.

25

5 Comparison with other systems

5.1 GULP versus PATR-II

PATR-II (Shieber 1986a, b) is the most widely used software tool for imple-
menting unification-based grammars, as well as the most mature and sophis-
ticated. It differs from GULP in three main ways:

(1) Whereas GULP is an extension of Prolog, PATR-II is a new self-contained
programming language.

(2) Whereas GULP allows the use of any parsing algorithm, PATR-II pro-
vides one specific parser (left-corner, Earley, or Cocke-Kasami-Younger, de-
pending on the version).

(3) Whereas GULP grammar rules treat feature structures as data items,

PATR-II grammar rules state equations on feature values.
Of these, (3) makes the biggest practical difference. The rule which GULP
writes as

s(person:X. .number:Y) -->
np(person:X. .number:Y),
vp(person:X. .number:Y).

(assuming use of the DCG parser) is rendered in PATR-IT as:

Rule S -—-> NP VP:
<S number>

<NP number>
<VP number>
<NP person>
<VP person>.

<3S number>
<3 person>
<3 person>

or the like. Paths are permitted, of course; one could write <NP syn agr
number> to build a more complex structure.
Here S, NP, and VP are not pure variables; the equations

<S cat> =8
<NP cat> = np
<VP cat> = vp

26

(or the equivalent) are implicit. Further abbreviatory power comes from
templates, which are predefined sets of features and values. Thus, instead of
writing the lexical entry

Word sleeps: <cat> =v
<person> = third
<number> = singular
<subcat> = intransitive.

the PATR-II programmer can define the template

Let ThirdSingVerb be <cat> =v
<person> = third
<number> = singular.

and then write:

Word sleeps: ThirdSingVerb
<subcat> = intransitive.

Word chases: ThirdSingVerb
<subcat> = transitive.

The GULP equivalent of a template is a Prolog fact such as:
thirdsingverb(person:third..number:singular) .
Lexical entries can then use this as an abbreviatory device:

v(Vf) --> [sleeps], { thirdsingverb(Vf),
Vf = subcat:intransitive 7.

v(Vf) --> [chases], { thirdsingverb(Vf),
Vf = subcat:transitive }.

(There is no cat:v here because in the DCG parser, categories are functors
rather than feature values.)

Unlike GULP, PATR-II provides for default inheritance. That is, the
programmer can invoke a template and then change some of the values that
it supplies, thus:

27

Word does: ThirdSingVerb
<cat> = auxverb.

This means: “Does is a ThirdSingVerb except that its category is not v but
rather auxverb.” PATR-II+ also provides for lexical redundancy rules that
transform one lexical entry into another, e. g., building a passive verb from
every active verb.

Both of these capabilities are absent from GULP per se, but they could be
built into a parser written in GULP. Indeed, many contrasts between GULP
and PATR-II reflect the fact that PATR-II is a custom-built environment for
implementing grammars that fit a particular mold, while GULP is a minimal
extension to a much more general-purpose programming language.

One advantage of GULP is that the full range of Prolog data structures is
available. Shieber (1986a:28-32) equips each verb with an ordered list of NPs
that are its syntactic arguments (subject, object, etc.). But there are no lists
in PATR-II, so Shieber has to construct them as nested feature structures:

Jirst: ... first element . ..

Jirst: ... second element ...
Jirst: ... third element ...
rest:
rest: ... fourth element ...
rest:
rest: end

This may be desirable on grounds of theoretical parsimony, but it is no-
tationally awkward. In GULP, one can simply write [X1,X2,X3,X4], where
X1, X2, X3, and X4 are variables, constants, feature structures, or terms of
any other kind.

5.2 GULP versus PrAtt

PrAtt (Prolog with Attributes), described briefly by Johnson and Klein
(1986), is a PATR-like extension of Prolog. In PrAtt, feature structure equa-
tions are treated as Prolog goals. An example is the DCG rule:

s(8f) --> np(NPf), vp(VPL),
{ Sf:number = NPf:number,
Sf :number = VPf:number,
Sf:person = NPf:person,
Sf:person = VPf:person }.

28

This looks almost like GULP syntax, but the meaning is different. NPf :number
is not a Prolog term, but rather an evaluable expression; at execution time,
it is replaced by the number element of structure NPf.

Compared to GULP, PrAtt makes a much bigger change to the semantics
of Prolog. GULP merely translates data into data (changing the format
from feature structures to value lists), but PrAtt translates data into extra
operations.

An example will make this clearer. In order to execute Sf:number =
NPf :number, PrAtt must extract the number features of Sf and NPf, then
unify them. In Johnson and Klein’s implementation, this extraction is done
at run time; that is, on find the expression Sf :number, the PrAtt interpreter
looks at the contents of Sf, and then replaces Sf:number with the value of
Sf’s number feature.

This implies that the value of Sf is known. If it is not — for example, if
the PrAtt-to-Prolog translation is being performed before running the pro-
gram - - then extra goals must be inserted into the program to extract the
appropriate feature values. The single PrAtt goal Sf :number = NPf:number
becomes at least three goals:

(1) Unify Sf with something that will put the number value into a unique
variable (call it X).

(2) Unify NPf with something that will put its number value into a unique
variable (call it Y).

(3) Unify X and Y.

To put this another way, whereas GULP modifies the syntax for Prolog
terms, PrAtt modifies the unification algorithm, using three calls to the ex-
isting Prolog unification algorithm to perform one PrAtt unification.

5.3 GULP versus AVAG

AVAG (Attribute-Value Grammar, Sedogbo 1986) is an implementation of
generalized phrase structure grammar (GPSG), a framework for expressing

linguistic analyses. A three-pass compiler translates AVAG notation into
Prolog II. As such, AVAG is far more complex than GULP or PrAtt, and

29

there is little point in making a direct comparison. Comparing AVAG to
PATR-II would be instructive but is outside the scope of this paper.

AVAG is interesting because it uses the Prolog II built-in predicates dif
(which means “this variable must never be instantiated to this value”) and
freeze (“wait until these variables are instantiated, then test them”) to
implement negative-valued and set-valued features respectively. For example,
the rule

voit:
<cat> = verb
<person> /= 2
<number> = sing.

uses dif to ensure that the person feature never equals 2, and

chaque:
<cat> = art
<gender> = [mas,fem]
<number> = sing.

uses freeze to ensure that when the gender feature becomes instantiated, its
value is mas or fem. There are no direct equivalents for dif or freeze in con-
ventional (Edinburgh) Prolog; they could be implemented only by changing
the inference engine.

5.4 GULP versus STUF

STUF (Stuttgart Formalism) is a formal language for describing unification-
based grammars. It is more comprehensive than PATR-II and as yet is only
partly implemented (Bouma et al. 1988).

Comparing STUF to GULP would be rather like comparing linear algebra
to Fortran; the systems are not in the same category. Nonetheless, STUF
introduces a number of novel ideas that could be exploited in parsers or other
systems written in GULP.

The biggest of these is nondestructive unification. In Prolog, unification
is a destructive operation; terms that are being unified are replaced by their
unifier. For example, ifX = [a,_] and Y = [_,b], then after unifying X and
Y,X =Y = [a,b]. In STUF, on the other hand, an expression such as

30

z=(xy)

creates a third structure z whose value is the unifier of x and y; x and y them-
selves are unaffected. Nondestructive unification can be implemented in Pro-
log by copying the terms before unifying them (Covington et al. 1988:204).

Further, if the unification fails, z gets the special value FAIL. If x and y
are feature structures, and parts of them are unifiable but other parts are
not, the non-unifiable parts will be represented by FAIL in the corresponding
parts of z. This provides a way to implement negative-valued features. For
example, to ensure that a verb is not third person singular, one can stipulate
that when its person feature is unified with person:3, the result is FAIL.

In STUF, a feature can also have a set of alternatives as its value, and
when two structures containing such sets are unified, the unifier is the set
of all the unifiers of structures that would result from choosing different
alternatives.

Finally, STUF exploits the fact that grammar rules can themselves be
treated as feature structures. For example, the rule

NP VP
S — | person:X person: X
number:Y number:Y

(or more precisely the tree structure that it sanctions) can be expressed
as the feature structure

mother: {categm*y: s]

category: np category: vp
daughter_1: | person: X daughter_2: | person: X
number: Y number: Y

STUF therefore implements grammar rules via “graph application,” an
operation that treats one feature structure (directed acyclic graph) as a func-
tion to be applied to another. Graph application is an operation with four
arguments: (1) a graph expressing the function; (2) a graph to be treated as
the argument; (3) a path indicating what part of the argument graph is to
be unified with the function graph; and (4) a path indicating what part of
the argument graph should be unified (destructively) with the result of the
first unification. The ordinary GULP practice of simply unifying one graph

31

with another is a special case of this.

6 Future Prospects

6.1 Possible improvements

One disadvantage of GULP is that every feature structure must contain a
position for every feature in the grammar. This makes feature structures
larger and slower to process than they need be. By design, unused features
often fall in the uninstantiated tail of the value list, and hence take up neither
time nor space. But not all unused features have this good fortune. In
practice, almost every value list contains gaps, i. e., positions that will never
be instantiated, but must be passed over in every unification.

To reduce the number of gaps, GULP could be modified to distinguish
different types of value lists. The feature structure for a verb needs a feature
for tense; the feature structure for a noun does not. Value lists of different
types would reserve the same positions for different features, skipping features
that would never be used. Some kind of type marker, such as a unique
functor, would be needed so that value lists of different types would not
unify with each other.

Types of feature structures could be distinguished by the programmer —
e. g., by giving alternative g_features declarations — or by modifying the
GULP translator itself to look for patterns in the use of features.

6.2 Keyword parameters via GULP

Unification-based grammar is not the only use for GULP. Feature structures
are a good formalization of keyword-value argument lists.

Imagine a complicated graphics procedure that takes arguments indicat-
ing desired window size, maximum and minimum coordinates, and colors,
all of which have default values. In Pascal, the procedure can only be called
with explicit values for all the parameters:

OpenGraphics(480,640,-240,240,-320,320,green,black) ;
There could, however, be a convention that 0 means “take the default:”

OpenGraphics(0,0,0,0,0,0,red,blue);

32

Prolog can do slightly better by using uninstantiated arguments where de-
faults are wanted, and thereby distinguishing “default” from “zero”:

In GULP, however, the argument of open_graphics can be a feature struc-
ture in which the programmer mentions only the non-default items:

:— open_graphics(foreground:red..background:blue).

In this feature structure, the values for x_resolution, y_resolution,x_maximum,
x_minimum, y_maximum, and y_minimum (or whatever they are called) are left
uninstantiated because they are not mentioned. So in addition to facilitating

the implementation of unification-based grammars, GULP provides Prolog
with a keyword argument system.

References

[1] Barton, G. Edward; Berwick, Robert C.; and Ristad, Eric Sven.
1987. Computational complexity and natural language. Cambridge, Mas-
sachusetts: MIT Press.

2| Bouma, Gosse; Konig, Esther; and Uszkoreit, Hans. 1988. A flexible
g
graph- unification formalism and its application to natural-language pro-
cessing. IBM Journal of Research and Development 32:170-184.

[3] Bresnan, Joan, ed. 1982. The mental representation of grammatical re-
lations. Cambridge, Massachusetts: MIT Press.

[4] Chomsky, Noam. 1957. Syntactic structures. (Janua linguarum, 4.) The
Hague: Mouton.

[5] Chomsky, Noam. 1965. Aspects of the theory of syntax. Cambridge, Mas-
sachusetts: MIT Press.

[6] Covington, Michael A. 1987. GULP 1.1: an extension of Prolog for
unification- based grammar. ACMC Research Report 01-0021. Advanced
Computational Methods Center, University of Georgia.

33

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Covington, Michael A.; Nute, Donald; and Vellino, André 1988. Prolog
programmang wn depth. Glenview, I1l.: Scott, Foresman.

Gazdar, Gerald; Klein, Ewan; Pullum, Geoffrey; and Sag, Ivan. Gen-
eralized phrase structure grammar. Cambridge, Massachusetts: Harvard
University Press.

Giannesini, Francis; Kanoui, Henry; Pasero, Robert; and van Caneghem,

Michel. 1986. Prolog. Wokingham, England: Addison-Wesley.

Johnson, Mark, and Klein, Ewan. 1985. A declarative formulation of
Discourse Representation Theory. Paper presented at the summer meet-
ing of the Association for Symbolic Logic, July 15-20, 1985, Stanford
University.

Johnson, Mark, and Klein, Ewan. 1986. Discourse, anaphora, and pars-
wng. Report No. CSLI-86-63. Center for the Study of Language and
Information, Stanford University. Also in Proceedings of Coling86 669
675.

Joshi, Aravind K. 1986. The convergence of mildly context-sensitive
grammara formalisms. Draft distributed at Stanford University, 1987.

Kamp, Hans. 1981. A theory of truth and semantic representation.
Reprinted in Groenendijk, J.; Janssen, T. M. V.; and Stokhof, M., eds.,
Truth, winterpretation, and wnformation. Dordrecht: Foris, 1984.

Kaplan, Ronald M., and Bresnan, Joan. 1982. Lexical-Functional
Grammar: a formal system for grammatical representation. Bresnan

1982:173-281.

Karttunen, Lauri. 1986a. D-PATR: a development enwvironment for
unification- based grammars. Report No. CSLI-86-61. Center for the
Study of Language and Information, Stanford University. Shortened ver-
sion in Proceedings of Coling86 74-80.

Karttunen, Lauri. 1986b. Features and values. Shieber et al. 1986 (vol.
1), 17- 36. Also in Proceedings of Coling84 28-33.

34

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Matsumoto, Yuji; Tanaka, Hozumi; and Kiyono, Masaki. 1986. BUP: a
bottom- up parsing system for natural languages. Michel van Caneghem
and David Warren, eds., Logic programmang and its applications 262

275. Norwood, N.J.: Ablex.

Pollard, Carl, and Sag, Ivan A. 1987. Information-based syntax and se-
mantics, vol. 1: Fundamentals. (CSLI Lecture Notes, 13.) Center for the
Study of Language and Information, Stanford University.

Sedogbo, Celestin. 1986. AVAG: an attribute/value grammar tool. FNS-
Bericht 86-10. Seminar fiir natiirlich-sprachliche Systeme, Universitat
Tibingen.

Shieber, Stuart M. 1986a. An wntroduction to unification—based ap-
proaches to grammar. (CSLI Lecture Notes, 4.) Center for the Study
of Language and Information, Stanford University.

Shieber, Stuart M. 1986b. The design of a computer language for lin-
guistic information. Shieber et al. (eds.) 1986 (vol. 1) 4-26.

Shieber, Stuart M.; Pereira, Fernando C. N.; Karttunen, Lauri; and
Kay, Martin, eds. A compilation of papers on unification-based grammar
formalisms. 2 vols. bound as one. Report No. CSLI-86-48. Center for
the Study of Language and Information, Stanford University.

Spencer-Smith, Richard. 1987. Semantics and discourse representation.
Mind and Language 2.1: 1-26.

35

Appendix. GULP 2.0 User’s Guide

A Overview

GULP is a laboratory instrument, not a commercial product. Although
reasonably easy to use, it lacks the panache and sophistication of Turbo
Pascal or Arity Prolog 5.0. The emphasis is on getting the job done as
simply as possible.

The final word on how GULP works is contained in the file GULP.ARI
or GULP.PL, which you should consult whenever you have a question that
is not answered here.

B Installation and access
On the VAX, GULP is already installed, and you reach it by the command
$ gulp

This puts you into a conventional Prolog environment (note: not a Quintus
Prolog split-screen environment) in which the GULP built-in predicates are
available.

The IBM PC version of GULP is supplied as a modified copy of Arity
Prolog Interpreter 4.0. It is for use only on machines for which Arity Prolog
18 licensed and is not for distribution outside the AI Research Group.

Many of the GULP file names are the same as files used by the unmodified
Arity Prolog Interpreter. It is therefore important that GULP be installed
in a different directory.

To run GULP you also need a full-screen editor that is accessible by the
command:

edit filename
GULP passes commands of this form to DOS when invoking the editor.

We usually use AHED.COM, renamed EDIT.COM, for the purpose, but you
can use any editor that produces ASCII files.

36

C How to run programs

GULP is simply a version of Prolog with more built-in predicates added. All
the functions and features of Prolog’ are still available and work exactly as
before. GULP is used in exactly the same way as Prolog except that:

(1) Programs containing feature structures must be loaded via the built-
in predicate load, not consult or reconsult. The reason is that consult or
reconsult would load the feature structures into memory without converting
them into value lists. Prolog will do this without complaining, but GULP
programs will not work. Never use consult or reconsult to load anything
that contains GULP feature structures.

(2) You must always invoke the editor with the GULP command ed, not
with whatever command you would use in Prolog. This is important because
your ordinary editing command would automatically invoke reconsult after
editing; ed invokes load instead.

(3) You cannot use feature structure notation in a query because queries
do not go through the translator. Write your program so that you can in-
voke all the necessary predicates without having to type feature structures
on the command line.

D Built-in predicates usually used as com-
mands

?- load filename.

Loads the program on file filename into memory via the GULP translator.
load is like reconsult in that, whenever a predicate is encountered that is
already defined, the old definition is discarded before the new definition is
loaded. This means that all clauses defining a predicate must be on the same
file, but they need not be contiguous. Further, you can load definitions of

"Except the module system, which uses the colon(‘:’) for its own purposes and conflicts

with GULP syntax.

37

different predicates from different files without conflict. Further, you can
embed a call to load in a program to make it load another program.

If the file name is not in quotes, the ending .GLP is added. If the file
name contains a period, it must be typed in quotes (single or double).
?- load.
Loads (again) the file that was used in the most recent call to load or ed.
?7- ed filename.
Calls the editor to process file filename, then loads that file.

7- ed.

Edits and loads (again) the file that was used in the most recent call to
load or ed.

?- list P/N.

Lists all clauses that define the predicate P with N arguments, provided
these clauses were loaded with ed or load. (Note: In the case of grammar
rules, the number of arguments includes the arguments automatically sup-
plied by the Prolog grammar rule translator.)

?- list P.

Lists all clauses that define the predicate P with any number of arguments,
provided these clauses were loaded with ed or load.

?- list.

Lists all clauses that were loaded with ed or load.

?- new.

Clears the workspace; removes from memory all clauses that were loaded

38

with ed or load. (Does not delete clauses that were placed into memory by
consult, reconsult, or assert.)

E Built-in predicates usually used within
the program

g _translate(FeatureStructure,ValueList)

Translates a feature structure into a value list, or vice versa. Used when
you must interconvert internal and external representations at run time (e.
g., to input or output them). For example, the following will accept a feature

structure in GULP notation from the keyboard, translate it into a value list,
and pass the value list to your predicate test:

7- read(X), g_translate(X,Y), test(Y).

The following translates a feature structure X from internal to external rep-
resentation and prints it out:

... g-translate(Y,X), write(Y).

display_feature structure(X)

Displays X in a convenient indented notation (not GULP syntax), where
X is either a feature structure or a value list.

g display(X)

Equivalent to display_feature structure(X); retained for compatibility
with GULP 1.

g printlength(A,N)
Where A is an atom, instantiates N to the number of characters needed

39

to print it. Useful in constructing your own indented output routines.
writeln(X)
If X is a list, writes each element of X on a separate line and then be-

gins a new line. If X is not a list, writes X and then begins a new line.
Examples:

writeln(‘This is a message.’).

writeln([*This is a’,‘two-line message.’]).

Lists within lists are not processed recursively. The elements of the out-
ermost list are printed one per line, and lists within it are printed as lists.

append(List1,List2,List3)

Concatenates Listl and List2 giving List3, or splits List3 into Listl and
List2.

member(Element,List)

Succeeds if Element is an element of List. If Element is uninstantiated,
it will be instantiated, upon backtracking, to each successive element of List.

remove duplicates(List1,List2)

Removes duplicate elements from Lust! giving List2.
retractal All(P)

Retracts (abolishes) all clauses whose predicate is P.
phrase(Constituent, InputString)

Provides a simplified way to call a parser written with DCG rules; for exam-
ple, the goal ?- phrase(s,[the,dog,barks]) is equivalent to ?- s([the,dog,barks],[]).

40

copy(X,Y)

Copies term X, giving term Y. These terms are the same except that all
uninstantiated variables in X are replaced by new uninstantiated variables
in Y, arranged in the same way. Variables in Y can then be instantiated
without affecting X.

call if possible(Goal)
Executes Goal, or fails without an error message if there are no clauses

for Goal. (In Quintus Prolog, the program crashes with an error message if
there is an attempt to query a goal for which there are no clauses.)

gfs(X)

Succeeds if X is an untranslated feature structure, i. e., a term whose prin-

o 6
.

cipal functor is 27, ‘.7, or ‘:2’.

g not_fs(X)

Succeeds if X is not an untranslated feature structure.
gvI(X)

Succeeds if X is a value list (the internal representation of a feature struc-
ture).

F Other built-in predicates

g ed_command(X)

Instantiates X to the command presently used to call the editor. To call a dif-
ferent editor, assertz your own clause for this predicate (e. g., ‘g_ed_command(emacs)’).

g herald(X)

41

Instantiates X to an atom identifying the current version of GULP.

G Differences between GULP 1.1 and 2.0

(1) g_features declarations are no longer required, but are still permitted,
and, if used, need not be complete.

(2) The operator ‘..” is now preferred in place of ‘::’. However, the older
form can still be used.

(3) There have been minor changes in the operator precedence of > and
‘..” relative to other operators. This is extremely unlikely to cause problems
unless you have written feature structures that contain other operators such
as ‘4’ or ‘-,

(4) GULP 2.0 distinguishes between features that are mentioned but unin-
stantiated, and features that are never mentioned. Previously, g display
never printed out any uninstantiated features.

(5) Bugs have been corrected. Translation of value lists to feature struc-
tures works correctly.

(6) Some rarely used built-in predicates have been deleted. In all cases these
predicates had more common synonyms (ed rather than g ed, list rather

than g list, etc.).

(7) list translates feature structures into GULP notation before displaying
them. (A debugger with the same capability is foreseen in the future.)

(8) Nested loads are now supported. That is, a file being loaded can contain
a directive such as ‘:- load file2.” which will be executed correctly.

42

Figure 1. A syntactic tree (based on Chomsky 1957).

/N

/ \ |
\Y
The dog barks.

Figure 2. The same tree with features added.
S

VP

NP .
num: singular

[num: singular D pers: 3rd
tense: present

D N \%
[. D num: singular
num: singular
pers: 3rd
tense: present

The dog barks

43

Figure 3. An example of a unification-based grammar.

[a] S T NP VP
sem: |pred:X sem:Y sem: |pred:X
argl:y case:nom arg2:.Z
arg2:Z
[b] VP T \ NP
© |pred:X1 {sem:Xl } sem:Y'1
g2:Y1 case:acc
[c] \% T sees
Jsem:SEES H
[d] NP T - Max
[sem:MAX D
[e] NP T Bill
Dsem:BILL D
[f] NP T ~ me

‘ME
case:acc

44

Figure 4. Bottom-up parsing of Max sees Bill. a. Rules [c], [d], and [e]

supply features for individual words:

NP VP NP

U sem:MAX H H Sem:SEESJ H sem:BILLU

b. Rule [b] allows V and NP to be grouped into a VP:

VP

sem: pred: SEES
arg2: BILL

NP \% NP
D sem: MAX] sem: SEES U sem: BILL
case: acc

45

c. Rule [a] allows NP and VP to be grouped into an S:

S

sem: red:SEES
gl: MAX
g2: BILL

VP
sem: ||pred: SEES
arg2: BILL

T

NP v NP
sem: MAX Hsem: SEES] sem: BILL
case: nom case: acc

Max sees Bill

46

Figure 5. DAG representations of feature structures.

ab
cb — a
ed
b d
syn: ase; acc N sem
gender: masc
sem: MAN
- - case gender MAN
acc masc

47

Figure 6. Parse tree for Max sees me. The ungrammatical sentence Me sees
Max is ruled out by a feature conflict.

S
sem:; red: SEES
gl: MAX
g2: ME
VP
sem: | pred: SEES
arg2: ME
NP Vv NP
“ sem: MAX } Hsem: SEES H sem: ME
Max sees me_

48

Figure 7.
% GULP example 1.
% Grammar from Figure 3, in DCG notation, with GULP feature structures.

s(sem: (pred:X .. argl:Y .. arg2:Z)) --> np(sem:Y .. case:nom),
vp(sem: (pred:X .. arg2:7Z)).

vp(sem: (pred:X1 .. arg2:Y1)) --> v(sem:X1),
np(sem:Y1).

v(sem: ‘SEES’) --> [sees].
np(sem: ‘MAX’) --> [max].
np(sem: ‘BILL’) --> [bill].

np(sem: ‘ME’ .. case:acc) --> [me].

% Procedure to parse a sentence and display its features
try(String) :- writeln([Stringl),
phrase (s(Features) ,String),
display_feature_structure(Features).
% Example sentences
testl :- try([max,sees,bill]).

test2 :- try([max,sees,me]).
test3 :- try([me,sees,max]). /* should fail */

49

Figure 8.

% Same as GULP example 1, but written in a much more PATR-like style,
% treating the unifications as separate operations.

s(Sfeatures) --> np(NPfeatures), vp(VPfeatures),
{ Sfeatures = sem: (pred:X .. argl:Y .. arg2:Z),
NPfeatures = sem:Y .. case:nom,
VPfeatures = sem: (pred:X .. arg2:Z) }.

vp(VPfeatures) --> v(Vfeatures), np(NPfeatures),
{ VPfeatures = sem: (pred:X1 .. arg2:Y1),

Vfeatures = sem:X1,

NPfeatures = sem:Y1 }.
v(Features) --> [sees], { Features = sem: ‘SEES’ }.
np(Features) --> [max], { Features = sem:‘MAX’ }.
np(Features) --> [bill], { Features = sem:‘BILL’ }.
np(Features) --> [me], { Features = sem:‘ME’ .. case:acc }.

% Procedure to parse a sentence and display its features
try(String) :- writeln([Stringl),
s (Features,String, []),
display_feature_structure(Features).
% Example sentences
testl :- try([max,sees,bill]).

test2 :- try([max,sees,me]).
test3 :- try([me,sees,max]). /* should fail */

a0

Figure 9.

% Demonstration of a hold stack that

% picks up the word ‘what’ at beginning of
% sentence, and carries it along until an
% empty NP position is found

% S may or may not begin with ‘what did’.
% In the latter case ‘what’ is added to the stack
% before the NP and VP are parsed.

s(S8) --> np(NP), vp(VP),

{ S = hold: (in:H1..out:H3),
NP = hold: (in:H1..out:H2),
VP = hold: (in:H2..out:H3) }.

8(8) --> [what,did], np(NP), vp(VP),
{ S = hold: (in:H1..out:H3),
NP = hold: (in:[what|H1]..out:H2),
VP = hold: (in:H2..out:H3) }.

% NP is parsed by either accepting det and n,
% leaving the hold stack unchanged, or else
% by extracting ‘what’ from the stack without
% accepting anything from the input string.

np(NP) --> det, n, { NP = hold: (in:H..out:H) }.

np(NP) --> []1, { NP = hold: (in:[what|H1]..out:H1) }.

% VP consists of V followed by NP or S.
% Both hold:in and hold:out are the same
% on the VP as on the S or NP, since the
% hold stack can only be altered while
% processing the S or NP, not the verb.

al

vp(VP) --> v, np(NP), { VP = hold:H,
NP = hold:H I.
vp(VP) --=> v, s(S), { VP = hold:H,

S = hold:H }.
% Lexicon

det --> [the];[a];[an].
n --> [dogl;[cat]; [boyl].
v -=> [said];[say]; [chase]; [chased].

try(X) :- writeln([X]),
S = hold: (in:[]..out:[1),
phrase(s(S),X,[1).

testl :- try([the,boy,said,the,dog,chased,the,cat]).
test2 :- try([what,did,the,boy,say,chased,the,cat]).
test3 :- try([what,did,the,boy,say,the,cat,chased]).
test4 :- try([what,did,the,boy,say,the,dog,chased,the,cat]).

/* testd should fail */

32

Figure 10.
% Discourse Representation Theory

% (part of the program from Johnson & Klein 1986,
% translated from PrAtt into GULP).

% unique_integer (N)

A instantiates N to a different integer
A every time it is called, thereby generating
% unique indices.

unique_integer(N) :-
retract(unique_aux(N)),
!

2

NewN is N+1,
asserta(unique_aux (NewN)) .

unique_aux(0) .

% Nouns

A Each noun generates a unique index and inserts
% it, along with a condition, into the DRS that
% is passed to it.

n(N) --> [man],
{ unique_integer(C),
N = gyn:index:C ..
gsem: (in: [Current|Super]
out: [[C,man(C) |Current] |Super]) }.

n(N) --> [donkey],
{ unique_integer(C),

N = gyn:index:C ..

a3

gsem: (in: [Current|Super]
out: [[C,donkey(C) |Current]|Super]) }.

% Verbs

A Each verb is linked to the indices of its arguments
A through syntactic features. Using these indices,

% it adds the appropriate predicate to the semantics.

v(V) -—> [saw],
{ V= syn: (argl:Argl .. arg2:Arg2)
gsem: (in: [Current|Super]
out: [[saw(Argl,Arg2)|Current]|Super]) }.

% Determiners

A Determiners tie together the semantics of their
% acope and restrictor. The simplest determiner,

% ‘a’, simply passes semantic material to its

% restrictor and then to its scope. A more complex
% determiner such as ‘every’ passes an empty list
% to its scope and restrictor, collects whatever
A semantic material they add, and then arranges

A it into an if-then structure.

det(Det) --> [a],

{ Det = sem:res:in:A, Det = sem:in:A,
Det = sem:scope:in:B, Det = sem:res:out:B,
Det = sem:out:C, Det = sem:scope:out:C }.

det(Det) --> [every],
{ Det = sem:res:in:[[][A], Det = sem:in:A,
Det = sem:scope:in:[[]|B], Det = sem:res:out:B,
Det = sem:scope:out: [Scope,Res| [Current |Super]],
Det = sem:out:[[Res>Scope|Current] |Super] }.

% Noun phrase

o4

% Pass semantic material to the determiner, which

% will specify the logical structure.
np(NP) --> { NP=sem:A, Det=sem:A,
Det=sem:res:B, N=sem:B,
NP=syn:C, N=syn:C }, det(Det),n(N).

% Verb phrase

% Pass semantic material to the embedded NP
% (the direct object).
vp(VP) -=> { VP = sem:A, NP = sem:A,

NP = sem:scope:B, V = sem:B,

VP = syn:arg2:C, NP = syn:index:C,

VP = syn:D, V = syn:D }, v(V), np(NP).
% Sentence
% Pass semantic material to the subject NP.
% Pass VP semantics to the subject NP as its scope.
8(S) —=> { S = sem:A, NP = sem:A,

S = syn:B, VP = syn:B,

NP = sem:scope:C, VP = sem:C,
VP = syn:argl:D, NP = syn:index:D }, np(NP), vp(VP).

% Procedure to parse and display a sentence

try(String) :- write(String),nl,

Features = sem:in:[[]], /* start w. empty structure */

phrase (s(Features) ,String),

Features = sem:out:SemOut, /* extract what was built */

display_feature_structure(SemOut) .

% Example sentences

39

testl :
test2 :
test3 :
testd :

try([a,man,saw,a,donkey]) .
try([a,donkey,saw,a,man]) .
try([every,man,saw,a,donkey]) .
try([every,man,saw,every,donkey]) .

36

Figure 11.

% BUP in GULP:
% Bottom-up parsing algorithm of Matsumoto et al. (1986)
% with the grammar from Figure 3.

% Goal-forming clause

goal(G,Gf,S81,83) :-
word(W,wf,S1,82),
NewGoal =.. [W,G,Wf,Gf,S2,83],
call(NewGoal) .

% Terminal clauses for nonterminal symbols

s(s,F,F,X.,X).
vp(vp,F,F,X,X).
np(np,F,F,X,X).

% Phrase-structure rules

% np vp —=> s

np(G,NPf,Gf,S1,S3) :- goal(vp,VPf,S1,52),
a8(G,8f,Gf,S2,83),
NPf = sem:Y..case:nom,

VPf = sem: (pred:X..arg2:Z),
Sf = sem: (pred:X..argl:Y..arg2:Z).

% v np -—> vp

v(G,Vf,Gf,81,83) :- goal(mp,NPf,S1,52),
vp(G,VPf,Gf,S2,83),

37

Vi = sem:X1,
NP£ sem:Y1..case:acc,
VPf = sem: (pred:X1..arg2:Y1).

% Terminal symbols

word(v,sem: ‘SEES’, [sees|X] ,X).

word (np,sem: ‘MAX’, [max|X],X) .

word (np,sem: ‘BILL’, [bill|X],X).
word(np,sem: ‘ME’ . .case:acc, [me|X],X).

% Procedure to parse a sentence and display its features

try(String) :- writeln([Stringl),
goal(s,Features,String, [1),
display_feature_structure(Features).

% Example sentences

testl :- try([max,sees,bill]).

test2 :- try([max,sees,me]).
test3 :- try([me,sees,max]). /* should fail */

a8

