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1 Introduction/Abstract

This is a preliminary report on a set of techniques for translating the dis-
course representation structures (DRSes) of Kamp (1981) into semantically
equivalent clauses in a slightly extended form of Prolog. Together with dis-
course representation theory (DRT) itself, these techniques yield a system for
translating English into Prolog. A working prototype has been built using
Quintus Prolog on a VAX workstation1.

1This work was supported by National Science Foundation Grant Number IST-85-
02477. Opinions and conclusions expressed here are solely those of the authors.
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2 Methodology

Both computational linguistics and natural language semantics have reached
the stage where precise solutions to small problems are of greater value than
vague proposals for solutions to large problems. This paper is offered in that
spirit.

Discourse representation theory (DRT) covers only a subset of the semantic
phenomena of English, not including, for example, plurals or definite noun
phrases. Prolog, even with our extensions, is less powerful than classical
logic, which in turn is less powerful than natural language. So any system
that translates English to Prolog via DRT can accept no more than a subset
of English. Nonetheless, this subset is large enough to display clearly the
solutions to a variety of problems of semantic representation — solutions that
will carry over into a more comprehensive theory when one is developed.

The following are among the design goals of our system:

(1) To preserve the main advantage of Prolog — its ability to perform in-
ference more rapidly than a full resolution theorem prover by constraining
its search space. This contrasts with the approaches taken by Guenthner
(1986), Kolb (1985, 1987), and a group at Imperial College, London (Gab-
bay, personal communication), who built inference engines for discourse rep-
resentation structures.

(2) To preserve the main advantage of DRT — the ability to represent a text
as a single unit by focusing on its semantic and logical structure rather than
on individual sentences or propositions, and hence incorporating the textual
context that is necessary for interpreting each subsequent sentence.

(3) To represent knowledge and its semantic structure in a form as close as
possible to ordinary Prolog clauses.

We extend Prolog by adding conditional queries (the ability to ask whether an
“if-then” relation holds), explicit negation (rather than negation as failure),
and a table of identity that enables non-unifiable terms to be treated as
equivalent for some purposes.
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3 Discourse representation theory

3.1 Overview of DRT

Discourse representation theory (DRT), introduced by Kamp (1981), is a
more satisfactory representation of natural language semantics than earlier
representations such as classical logic or Montague grammar. The key prop-
erties of DRT include the following:

(1) It is not sentence-based. DRT constructs representations of discourses,
not sentences. These representations are called discourse representation
structures (DRSes). Rather than building a DRS for each sentence, we build
a single DRS to which each sentence contributes some material, using the
previously present material as context.

(2) It is not tied closely to the syntax of English nor to a particular theory
of syntax. Any syntactic analysis suitable for determining meaning can be
used in an implementation of DRT.

(3) Structural restrictions on the accessibility of anaphoric antecedents are
predicted correctly.

(4) A theory of truth-conditions is built in. Truth is defined in terms of
embedding the DRS in a model. Thus DRT preserves the advantages of
predicate logic as a representation language while bringing the formalization
closer to the structure of natural language.

3.2 Discourse representation structures

A discourse representation structure is an ordered pair <U,Con> whereU is
a universe of discourse, i. e., a set of discourse entities, and Con is a set of
conditions, i. e., predicates or equations that these entities must fulfill. For
example, the sentence
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A farmer owns a donkey.

is represented by the DRS

U={X1,X2}

Con={farmer(X1),donkey(X2),owns(X1,X2)}

or in more usual notation:

X1 X2

farmers(X1)
donkey(X2)
owns(X1,X2)

The truth of a DRS is defined by trying to embed it in a model. A model
comprises a domain D, i. e., a set of entities that can be discussed, and an
interpretation function I that maps every n-place predicate of the language
onto a set of n-tuples of elements of D, and maps every logical constant of
the language onto an individual in D.

Intuitively, D is the set of things you can talk about (including imaginary as
well as real entities); I(farmer) is the set of elements of D that are farmers;
and I(owns) is the set of pairs of elements of D such that the first one owns
the second one.

To embed a DRS into a model, assign each discourse variable (X1 and X2

above) to an element of D. The DRS is true in the model if and only if it can
be embedded in such a way that all of the conditions are satisfied. Thus, the
DRS above is true in a particular model if, within that model, it is possible
to assign X1 to a farmer and X2 to a donkey which is owned by that farmer.
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3.3 Equations

Our implementation treats is as a predicate that requires two discourse vari-
ables to refer to the same individual. For example, the sentence

Pedro is a farmer.

is represented as:

X1 X2

named(X1,‘Pedro’)
farmer(X2)
X1 = X2

This is a temporary measure that will be replaced by a fully developed table
of identity (section 6.1 below).

3.4 Conditionals (“if-thens”)2

An “if-then” relationship between two propositions is expressed by a special
type of DRS condition. Thus

A farmer owns a donkey. If it is hungry he feeds it.

is represented as:

2We will call these “if-thens” rather than “conditionals” because the term “conditional”
is too easily confused with “condition,” and because some DRT “if-then” structures cor-
respond to sentences such as All men are mortal, which are called universals rather than
conditionals in ordinary philosophical discourse.
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X1 X2

farmer(X1)
donkey(X2)

hungry(X2)
⇒

feeds(X1,X2)

Crucially, one of the conditions of this DRS consists of two more DRSes
joined by ‘==>’. In general, the condition

DRS1 ==> DRS2

is satisfied (in a particular model) if and only if

every embedding that satisfies DRS1 also satisfies, or can be ex-
tended to satisfy, DRS2.

By saying ‘extended’ we leave open the possibility that DRS2 may contain
new variables of its own, which will need to be assigned to individuals in
the universe of discourse. This extends the embedding of DRS1 and of the
surrounding larger DRS, which did not assign these variables.

Note that the new variables of DRS1, if any, have implicit universal quantifiers,
and the new variables of DRS2 have implicit existential quantifiers. To satisfy
the whole condition, we must find some embedding of DRS2 to go with every
embedding of DRS1. A universal sentence such as

Every farmer owns a donkey.

is actually a kind of if-then; it means “If X is a farmer, then X owns a donkey”
and is represented as:
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X1

farmer(X1)
⇒

X2

donkey(X2)
owns(X1,X2)

That is: “Every embedding that assigns X1 to a farmer can be extended to
form an embedding that assigns X2 to a donkey owned by X1.” Or in ordinary
language, “For every farmer X1, there is some donkey X2 owned by X1.”

Because the quantifiers are implicit and there are no sentence boundaries,
some familiar problems of quantifier scope no longer arise. Consider for
example the discourse

A farmer owns a donkey. He feeds it.

In classical logic the first sentence would be

(Some X)(Some Y) farmer(X) & donkey(Y) & owns(X,Y).

The second sentence must somehow have access to the same donkey and
the same farmer, but if it is treated as a separate proposition, its variables
cannot be under the scope of the same quantifiers. Any translation into
classical logic will therefore need a special, explicit rule for combining two
propositions into one. In DRT, on the other hand, this combining is implicit
and automatic; sentences keep being added to the same DRS until there is a
reason not to do so.
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3.5 Anaphora and accessibility

A DRS can use its own discourse variables and those of DRSes which are
superordinate to it. Whenever a DRS contains another DRS, the outer DRS
is superordinate to the inner one. Further, the left side of an if-then is
superordinate to the right side, and superordinateness is transitive.

When one DRS is superordinate to another, we will say that the second DRS
is subordinate to the first.

This restriction makes correct predictions about the accessibility of antecedents
to anaphors (Kamp 1981).

3.6 Negation

DRT represents negated assertions as DRSes within DRSes, preceded by the
negation operator (here written NEG). Thus

Pedro owns a donkey. He does not beat it.

is represented by:

X1 X2

named(X1,‘Pedro’)
donkey(X2)
owns(X1,X2)

¬
beats(X1,X2)
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A condition of the form NEG DRSx is satisfied if and only if there is no exten-
sion of the current embedding that makes DRSx true.

Thus the above DRS is true in a model if there is an assignment of X1 and X2

such that X1 is Pedro and X2 is a donkey owned by Pedro, and this assignment
cannot be extended to satisfy the condition that X1 beats X2.

We note in passing a logical problem: what if Pedro owns two donkeys? DRT
allows us to choose the “wrong” donkey — the one he does not beat — and
use it to satisfy the above DRS even though it is not clear that this move
would be faithful to the meaning of the original English-language discourse.
This is related to the problem that present versions of DRT do not address
plurals at all.

3.7 Questions

Kamp’s DRT provides no way to distinguish statements from questions. We
treat yes-no questions as DRSes within DRS-conditions, marked with the
operator QUERY. Conditions of this type can appear only in the topmost
DRS, not in subordinate DRSes.

The most common use of questions in a natural language understanding
system is to request information from the computer. Accordingly, we posit
that a question does not contribute to the knowledge base, but rather directs
the hearer to test the truth of the included DRS and report the result. Thus
the discourse:

Maria is a woman. Is she happy?

is represented as
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X1

named(X1,‘Maria’)
woman(X1)

QUERY:
happy(X1)

A more general representation of questions would also be able to specify
variables whose values should be reported (e.g., “Who owns a donkey?”).

4 DRS construction

The DRS-building algorithm used in this project is that described by Cov-
ington and Schmitz (1988), a unification-based grammar modeled closely on
that of Johnson and Klein (1986).

A DRS is represented by a Prolog term drs(U,Con) where U is a list of
discourse variables and Con is a list of structures containing these variables.
In Prolog, the fastest way to build a list is to add material at the beginning.
As a result, the elements of U and Con appear in the opposite of the order
in which they occur in the discourse; this obviously has no effect on their
truth conditions. Further, Con contains additional predicates specifying the
gender of every discourse variable, to make it possible to find the antecedents
of anaphoric pronouns.

In the Covington and Schmitz implementation, discourse variables were rep-
resented by unique integers, but here they are unique Prolog variables. This
makes it possible to perform skolemization (described below) by simply in-
stantiating heretofore uninstantiated Prolog variables.

For example, A man owns a donkey is represented as
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drs([X2,X1],[owns(X1,X2),

gender(X2,n),

donkey(X2),

gender(X1,m),

man(X1)].

Proper names are represented by the predicate named, as in

named(X3,‘Pedro’)

thus leaving open the possibility of two or more people with the same name,
or two or more names for the same person.

Special DRS-conditions of the following forms represent, respectively, negated
assertions, questions, and if-thens:

neg(drs(...,...))

query(drs(...,...))

ifthen(drs(...,...))

These are elements of Con just like ordinary conditions.

The implementation has the ability to resolve anaphors, and for this purpose,
it uses the gender predicate to specify the gender of each discourse variable.
The antecedent of he, she, or it is the most recently mentioned discourse
variable of the appropriate gender which is found in the current DRS or a
DRS superordinate to it.

The discourse variable for the anaphor and the discourse variable for the
antecedent are unified by the anaphora resolver so they are for all practical
purposes identical.
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5 Translation into Prolog

5.1 Discarding irrelevant information

The first step in translating a DRS into a set of Prolog clauses and/or queries
is to “clean up” the output of the DRS-builder by discarding irrelevant in-
formation. This involves discarding all the DRS-conditions that describe
gender.

Further, the verb is introduces conditions that say that two discourse vari-
ables must be the same individual. For example, the sentence

Pedro is a farmer.

is represented (ignoring gender information) as:

X1 X2

named(X1,‘pedro’)
farmer(X2)
X1 = X2

In the present implementation, the clean-up routine simply unifies X1 with
X2, giving:

X1

named(X1,‘Pedro’)
farmer(X1)
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We will see in Section 6.1 that in some cases, two equated discourse variables
may not be unifiable after skolemization. A more adequate implementation
would leave the equation in the DRS and later mark the equated discourse
variables as equivalent in the table of identity.

5.2 Simple questions

The easiest sentences to translate into Prolog are simple questions such as

Does Pedro own a donkey?

which are, in effect, instructions to test the truth of a DRS in the model
defined by the current knowledge base. The queried DRS is:

X1 X2

named(X1,‘Pedro’)
donkey(X2)
owns(X1,X2)

We want to know whether there is an assignment of values to X1 and X2

such that named(X1,‘Pedro’), donkey(X2), and owns(X1,X2) will all be
satisfied.

Ex hypothesi, the interpretations of named, donkey, and owns — that is, the
sets of argument tuples that satisfy them — are given by the definitions of
these predicates in Prolog. Thus our task is exactly equivalent to solving the
Prolog query:

?- named(X1,‘Pedro’), donkey(X2), owns(X1,X2).
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Variables in Prolog queries have implicit existential quantifiers; so do free
variables in DRSes whose truth is being tested. For this type of sentence,
then, the semantics of Prolog and of DRT match closely.

5.3 Simple assertions

Assertions — statements of fact — are slightly more complicated to handle.
Clearly, the DRS for

A farmer owns a donkey.

— namely

X1 X2

farmer(X1)
donkey(X2)
owns(X1,X2)

should be translated by adding something to the knowledge base. But what
should we add?

We can’t just leave the variables free, generating the clauses

farmer(X1).

donkey(X2).

owns(X1,X2).

because free variables in Prolog facts and rules have implicit universal quan-
tifiers. In satisfying a Prolog query, free variables match anything, so these
clauses would mean “Anything is a farmer; anything is a donkey; anything
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owns anything.” In fact, because like-named variables in different clauses are
distinct, we haven’t even succeeded in saying that the donkey is the same as
the thing that is owned.

Rather, we must provide “dummy names” for existentially quantified entities
— one-element lists with distinct integers inside. We will call the hypothetical
farmer [1] and call the hypothetical donkey [2], and assert the facts:

farmer([1]).

donkey([2]).

owns([1],[2]).

Now if we ask “Is there a farmer that owns a donkey?” — i. e., the query

?- farmer(X), donkey(Y), owns(X,Y).

we get the answer that there is, and that the farmer is known as [1] and the
donkey is known as [2].

This is a special case of skolemization, to be dealt with below. In a later
implementation, we will use a table of identity to ensure that distinct names
can be recognized as referring to the same individual when necessary.

Even proper names are not treated as logical constants. Thus, Pedro owns

a donkey goes into Prolog as:

named([1],‘Pedro’).

owns([1],[2]).

donkey([2]).

There would be little advantage in using proper names as logical constants
because no proper names are available for most individuals. Further, by
using the predicate named we allow for ambiguous names and for individuals
with more than one name.
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5.4 Simple if-thens

In the simplest case, an if-then DRS condition is equivalent to a Prolog rule.
Consider the DRS condition:

Every old donkey is gray.

X1

donkey(X1)
old(X1)

⇒
gray(X1)

This condition is true if and only if every embedding that satisfies its an-
tecedent — that is, every embedding that assigns X1 to an old donkey —
also assigns X1 to a gray donkey.

If this if-then condition is known to be true, then, for any X, we can infer
that X is gray if we can prove that X is old and is a donkey. This is exactly
equivalent to the Prolog rule:

gray(X) :- donkey(X), old(X).

Here again Prolog semantics exactly matches DRT.

5.5 Distributing consequents

A minor syntactic problem arises if the consequent contains more than one
predicate, as in the following:

Every donkey is furry and warm-blooded.
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X1

donkey(X1)
⇒ furry(X1)

warm-blooded(X1)

A Prolog rule cannot have two predicates in its consequent; rules of the form

furry(X1), warm-blooded(X1) :- donkey(X1).

are not permitted. We deal with this by defining, for purposes of internal
representation, an operator ::- which is like the usual ‘if’ (:- ) except that:

(1) Both the antecedent and the consequent can be compound goals;

(2) Queries can be headed by ::-, i. e., one can ask whether an if-

then relation holds.

Rules headed by ::- are never asserted directly into the knowledge base. In-
stead, when an if-then is to be asserted, the consequent is broken up and a
series of ordinary Prolog rules is generated. A rule of the form

a, b, c ::- d, e, f.

is added to the knowledge base as the three rules:

a :- d, e, f.

b :- d, e, f.

c :- d, e, f.

This is known as distributing consequents. For very complex consequents,
a more compact representation could be obtained by creating a new symbol
x (taking as arguments are all the arguments of d, e, and f, if any) and
asserting, instead, the four rules:
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x :- d, e, f.

a :- x.

b :- x.

c :- x.

This was not done in the current implementation.

5.6 Skolemization

If the consequent of an if-then introduces new variables, these variables have
implicit existential quantifiers, which Prolog cannot represent. Thus

Every farmer owns a donkey.

X1

farmer(X1)
⇒

X2

donkey(X2)
owns(X1,X2)

is true if and only if, for every embedding that assigns X1 to a farmer, there
is some embedding that assigns X2 to a donkey owned by X1.

In Prolog (extended with ::-), if we were to say

donkey(X2), owns(X1,X2) ::- farmer(X1).

we would be saying that every farmer owns every donkey. If we gave the
donkey a dummy name, say [92], we would not be much better off, because

donkey([92]), owns(X1,[92]) ::- farmer(X1).
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would mean that every farmer owns the same donkey (this particular one
identified as [92]).

What we want to say is that every farmer owns a different donkey. This
is achieved by giving the donkey a dummy name that contains X1 so that,
in effect, the name depends on the assignment of X1:3

donkey([92|X1]), owns(X1,[92,X1]) ::- farmer(X1).

Then if we assign X1 to an individual named [83] who is a farmer, we get a
donkey named [92,83]; if we assign X1 to another farmer named [17], we get
a donkey named [92,17]; and so on. The table of identity described below
will enable us to equate [92,17] with a donkey already known under another
dummy name if necessary.

This is a form of skolemization, the method of eliminating existential quan-
tifiers proposed by Skolem (1928). Skolemization replaces every existentially
quantified variable with a function whose value is an individual that satisfies
the formula. For instance, in classical logic,

(All X) (Some Y) g(X,Y)

can be replaced by

(All X) g(X,f(X))

where f is a function which, given a value of X, yields a value of Y that would
satisfy the original formula. The existential quantifier is nothing more than a
claim that such a function exists. Its arguments are all the universally quan-
tified variables in the scope of whose quantifier the existentially quantified
variable occurs. Thus if every farmer owns a donkey, there is (or can be) a

3Recall that | divides a list into head and tail in Prolog, so that [a | [b,c,d]] is equivalent
to [a,b,c,d].
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different donkey for each farmer, and the Skolem function for the existen-
tially quantified donkey must take as an argument the universally quantified
farmer.

In large formulae, there are often some universally quantified variables that
can be shown to be irrelevant to a particular predicate; these need not be
arguments of the Skolem function, though it does no harm to use them. An-
drews (1986:123–127) compares various methods of skolemization and shows
how to eliminate unneeded arguments.

To skolemize an if-then structure in a DRS, we replace all the variables pin
the consequent with Skolem functions of the variables in the antecedent. A
Prolog term such as [92|X1] has a value that is a function of the value of
X1; this makes it an appropriate way to encode a Skolem function. Thus, for
example, the DRS-condition

X1

farmer(X1)
⇒

X2

donkey(X2)
owns(X1,X2)

is transformed into:

X1

farmer(X1)
⇒

[92,X1]

donkey([92,X1])
owns(X1,[92,X1])

which goes into extended Prolog as

donkey([92,X1]), owns(X1,[92,X1]) ::- farmer(X1)

and is asserted as the two Prolog rules:
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donkey([92,X1]) :- farmer(X1).

owns(X1,[92,X1]) :- farmer(X1).

The number 92 here is of course arbitrary, produced by a routine that returns
a heretofore unused integer every time it is called.

5.7 Queried if-thens

“Is every old donkey gray?” may mean either of two things. It may mean,
“If you are told that something is an old donkey, can you deduce that it is
gray?” Or it may mean “Are all the old donkeys that you know of gray?”
We will call these the deductive and inductive approaches to querying an
if-then.

The deductive approach is easily implemented using a technique suggested
by Gabbay and Reyle (1984): invent a hypothetical individual, temporarily
assert that it is an old donkey, and test whether it can be deduced to be gray.
We put this into our implementation by defining ::- as a Prolog predicate
so that queries of the form A ::- B can be answered:

(A ::- B) :- skolemize(B,[]),

asserta(B),

test(A,Result),

retract(B),

Result = yes.

That is, to test whether A ::- B holds, first replace all the variables in B with
dummy names, then temporarily add B to the knowledge base,4 then try to
deduce A. Here test(A,Result) is a metalogical predicate that instantiates
Result to yes or no depending on whether A succeeds; test itself succeeds
in either case.

4A practical implementation would allow B to be a compound goal and would replace
asserta and retract with procedures that assert and retract all of the conjuncts of which
B is composed.
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Note that this works only as long as A ::- B does not rely on negation as
failure. If we were trying to test the validity of

gray(X) ::- donkey(X)

and the knowledge base contained only the rule

gray(X) :- donkey(X), not young(X).

we would get wrong results. We would assert something like donkey([27])

and then query gray([27]). The hypothetical donkey would be taken to
be “not young” simply because we did not assert that it is young, and
gray([27]) would therefore be derivable, leading to the mistaken conclu-
sion that gray(X) is derivable from donkey(X) in all cases.

We avoid this problem by using an explicit (positive) way of representing
negation (Section 6.2).

The inductive approach says that A ::- B is true if (a) there are no cases
in the knowledge base that satisfy B without satisfying A, and (b) there are
enough cases that satisfy B to warrant making an inductive generalization.
That is, all donkeys are gray if the knowledge base contains a sufficient
number of donkeys and none of them fail to be gray.

The value of this “sufficient number” is open to question; in a human thinker
it depends on, among other things, the size of the overall sample, the rarity of
the phenomenon being described, the expected regularity, and the thinker’s
training in statistics. Here we will take it to be 1. Thus we add another rule
to the definition of the predicate ::- as follows:

(A ::- B) :- not (B, not A), /* No counterexamples */

B. /* One positive example */

N
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This provides all that is needed to handle queries that ask whether an if-then
is true.

Note that queried if-thens are not skolemized. In the context of a query, free
Prolog variables are taken to be existentially quantified, exactly as the DRT
semantics requires.

5.8 Nested if-thens

5.8.1 Nested antecedents: Prolog subgoals

Because if-thens can be queried on the Prolog level, they can appear as
subgoals in a Prolog rule. This provides a way to handle an if-then within
the antecedent of an if-then. Consider for example the DRS:

If every farmer owns a donkey, a man is happy.

X1

farmer(X1)
⇒

X2

dondey(X2)
owns(X1,X2)

⇒
X3

man(X3)
happy(X3)

Because the antecedent of an if-then is like a query, the inner if-then will not
be skolemized.5 X3 is skolemized by a Skolem function with no arguments;
its arguments should be the variables of the antecedent as a whole, and in
this example there are none. So the resulting Prolog clauses are:

man([57]) :- ( (donkey(X2), owns(X1,X2)) ::- farmer(X1) ).

5The present implementation erroneously skolemizes the antecedents of all if-then struc-
tures, even in queried contexts.
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happy([57]) :- ( (donkey(X2), owns(X1,X2)) ::- farmer(X1) ).

That is: [57] is a man and is happy if it is the case that for every farmer
X1, there is a donkey X2 that is owned by X1.

5.8.2 Nested consequents: Exportation

Nesting in the consequent of an if-then is more complicated. Consider the
sentence:

If Pedro is brave then every woman admires him.

The corresponding DRS is:

X1

named(X1,‘Pedro’)
brave(X1)

⇒ X2

woman(X2)
⇒

admires(X2,X1)

Naively, this should go into Prolog as something like

( admires(X2,X1) ::- woman(X2) ) :- named(X1,‘Pedro’),

brave(X1).

But this will not do. The above DRS can be used to infer that a par-
ticular woman — Maria, for instance — admires Pedro. The Prolog rule
cannot; at best it would match a query asking whether the if-then relation
admires(X2,X1) ::- woman(X2) holds.

24



In cases like this we employ the procedure of exportation, familiar from
classical logic, which enables us to transform

if P then (if Q then R)

into

if P and Q then R.

Actual DRSes are not as neat as the formulae of classical logic, and practical
questions arise, illustrated by the following example:

Every farmer owns a donkey, and if it’s hungry he feeds it.

X1

farmer(X1)
⇒

X2

donkey(X2)
owns(X1,X2)

hungry(X2)
⇒

feeds(X1,X2)

Like all if-thens, this is not a self-standing DRS, but rather a condition in a
larger DRS. Exportation should break it into two conditions:

X1

farmer(X1)
⇒

X2

donkey(X2)
owns(X1,X2)
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X1 X2

farmer(X1)
donkey(X2)
owns(X1,X2)
hungry(X2)

⇒
feeds(X1,X2)

The first of these comprises the material in the original if-then that was not
affected by exportation. The second is the result of exporting the inner if-
then. Its consequent is the consequent of the inner if-then. Its antecedent is
a combination of the antecedent of the outer if-then, the antecedent of the
inner if-then, and, crucially, the consequent of the outer if-then, except for
the part actually being exported. If donkey(X2) were not in the antecedent
of the second structure, nothing would say what kind of animal the farmer
was feeding.

This procedure, if followed ruthlessly, leads to excessively complex formulas.
Suppose the outer if-then has two if-thens in its consequent, and we are
exporting one of them. The antecedent of the result should contain, inter
alia, all the other conditions from the consequent of the original outer if-then.
And one of these is itself an if-then. This is not forbidden — after all, nesting
of if-thens in the antecedent is permitted. But the two if-thens in the original
consequent cannot use each other’s variables, since neither is superordinate
to the other. So it seems unlikely, if not impossible, for one of them to play
an essential role in identifying the entities used by the other.

The actual implementation takes a more modest approach. The if-then struc-
ture created by exportation has in its antecedent all the variables and con-
ditions of the antecedents of the inner and outer if-thens, and all the vari-
ables, but only some of the conditions, of the consequent of the outer if-then.
Specifically, it has the conditions which (a) are simple, not involving nesting
of if-thens, and (b) occurred prior to the inner if-then in the discourse. This
seems to be adequate for natural langauge in actual use.
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6 Remaining issues

6.1 The table of identity

Individuals introduced into the discourse under different names or Skolem
functions may later be discovered to be identical. For example:

Thales observes Hesperus.

Aristotle observes Phosphorus.

Hesperus is (the same as) Phosphorus.

The DRS for the first two sentences is:

X1 X2 X3 X4

named(X1,‘Thales’)
named(X2,‘Hesperus’)
observes(X1,X2)
named(X3,‘Aristotle’)
named(X4,‘Phosphorus’)
observes(X3,X4)

Assuming incremental processing, each DRS condition will be skolemized
and entered into the knowledge base as soon as its sentence is processed, if
not sooner. Thus, at the end of the second sentence, we have:

named([1],‘Thales’).

named([2],‘Hesperus’).

observes([1],[2]).

named([3],‘Aristotle’).

named([4],‘Phosphorus’).

observes([3],[4]).
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But now we discover from the third sentence that Hesperus and Phosphorus
are different names for the same entity. We would like to note this fact in
such a way that we can later ask,

Does Aristotle observe Hesperus?

?- named(X,‘Aristotle’), named(Y,‘Hesperus’), observes(X,Y).

and get “yes” as a reply. But Hesperus and Phosphorus have been skolemized
as non-unifiable entities, [3] and [4], so we can’t just unify them.

We have two options. One is to go back through the knowledge base and
change all occurrences of [4] to [3], or vice versa. The other, which we
actually adopt, is to maintain a table of identity so that non-unifiable terms
can be recognized as equivalent. We will then formulate the query as:

?- named(X,‘Aristotle’), identical(X,X1),

named(Y,‘Hesperus’), identical(Y,Y1),

observes(X1,Y1).

Each argument — X and Y — is now passed through an extra level of indi-
rectness. On the first attempt, the identical predicate simply unifies its
two arguments, instantiating X1 to X and Y1 to Y, so that the query works
exactly like our earlier proposal. But if this fails, it looks at the table of
identity and tries to instantiate X1 and X to two different terms that refer to
the same object, and likewise with Y1 and Y. Thus, if [3] and [4] have been
entered in the table, they will be treated as equivalent.

This query looks verbose, but in fact it is generated by a simple transforma-
tion of the original query: just insert calls to identical for any arguments
that are used in more than one subgoal. An alternative would be to modify
the inference engine so that it consults the table of identity when solving
queries.

The table of identity has been prototyped but not yet integrated with the
main English-to-Prolog translation system. The problem is that identity is a
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symmetric (commutative) and transitive relation. Thus it would require the
rules

identical(X,Y) :- identical(Y,X).

identical(X,Z) :- identical(X,Y), identical(Y,Z).

which would cause loops under some conditions by calling themselves end-
lessly.

Our solution is to store the table as an identity matrix represented by a set of
Prolog facts. The predicate identical is defined by only facts, not rules, and
hence cannot loop. All the appropriate facts are generated when an entry is
made into the table.

Initially, only the clause

identical(X,X).

is in the knowledge base; this corresponds to the main diagonal of the matrix
and ensures that any term will be treated as identical to itself. Additional en-
tries are made by a predicate make_identical. Calling make_identical(a,b)
, for example, adds not only the facts

identical(a,b).

identical(b,a).

but also any other facts called for by transitivity. For example, if iden-
tical(a,c) were already in the knowledge base, then make_identical(a,b)

would add four facts:

identical(a,b).

identical(b,a).

identical(c,b).

identical(b,c).
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The Prolog code to do this reflects the 2x2 dimensionality of the identity
matrix:

make_identical(X,Y) :-

setof(X1,identical(X,X1),XMatches),

setof(Y1,identical(Y,Y1),YMatches),

make_id_list_squared(XMatches,YMatches).

make_id_list_squared([],_).

make_id_list_squared([H|T],List) :-

make_id_list(H,List),

make_id_list_squared(T,List).

make_id_list(_,[]).

make_id_list(X,[H|T]) :-

(identical(X,H) ; assert(identical(X,H))),

(identical(H,X) ; assert(identical(H,X))),

make_id_list(X,T).

If the table of identity contains information for n individuals, it will contain
at most n2 clauses for identical, and usually considerably fewer.

6.2 Negation

The current implementation does not handle negation. We propose to handle
negation as a metalogical predicate neg, as in d-Prolog (Nute and Lewis
1986:6-7). Thus it will be possible to assert

neg donkey([2]).

to say “Individual [2] is not a donkey.”

30



Negative statements are not defined in terms of affirmative ones, nor vice
versa. From the inference engine’s point of view, donkey([2]) and neg
donkey([2]) are completely unrelated facts and each must be queried sep-
arately. Crucially, neither of them follows from the inability to derive the
other. The knowledge base could even contain both of them, though it would
then express a contradiction. Special routines could of course be written to
detect contradictions and identify the premises from which they arise.

This solves the problem with queried if-thens that we mentioned earlier. In
this system, the sentence “Every donkey that is not young is gray” translates
to:

gray(X) :- donkey(X), neg young(X).

Now, in order to test whether all donkeys are gray, we assert the hypothesis

donkey([23]).

and see if we can prove gray([23]). Using the above rule, we cannot. The
subgoal donkey([23]) succeeds, but the subgoal neg young([23]) does not,
because we never asserted neg young([23]) or anything from which it is
derivable. Thus the erroneous result does not occur.

6.3 Modal subordination

The DRT account of pronominal anaphora in conditional sentences presup-
poses a simple discourse structure in which antecedent clauses are always
superordinate to their consequent clauses. For example:

(1) If a farmer owns a donkey, he loves it.

(2) If a farmer owns every donkey, he beats it.
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In (1), it can refer to a donkey, which is in a DRS superordinate to it. But
in (2), it cannot refer to every donkey, because the donkey is introduced in
a subordinate DRS:

If a farmer owns every donkey, he beats it.

X1

farmer(X1)

X2

donkey(X2)
⇒

owns(X1,X2)

⇒
beats(X1,X2)

Hence the underlined occurrence of X2 is illegal and the anaphoric reference
is not permitted.

However, consider the following example (Roberts 1985, 1987):

(3) a. If a farmer owns a donkey, he feeds it lots of hay.

b. It soon grows fat on this diet.

Fragment (3) cannot possibly be called ungrammatical or even dubiously
grammatical. Clearly, sentence (3b) needs to go into the consequent of the
if-then structure established by (3a). Neither the truth-conditions nor the
anaphoric reference is handled correctly unless this is done. But the rules
for DRT, as formulated so far, do not provide for this. Roberts (1985, 1987)
refers to this phenomenon as “modal subordination” — semantically, the
mood (modus) of the second sentence makes it behave like a subordinate
clause in the first sentence, even though syntactically it is an independent
clause. Goodman (1988) independently noticed the phenomenon and called
it “multi-sentence consequents.”

To handle modal subordination correctly, we must:
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(1) formulate rules for recognizing modally subordinate sentences,
based on appropriate choices of verb moods and tenses, presence
of anaphors, and other indicators;

(2) build these rules into the DRS construction algorithm.

Implicit in this refinement of DRT is the recognition that discourse is more
complex than early versions of DRT admitted. Instead of one single topmost
DRS into which all independent clauses are inserted, an adequate theory of
discourse will need to provide for a complex hierarchical structure including
such things as subplots within a main plot, different mainplots at the same
level, dialogues, and the like.

Present DRT is indeed discourse-oriented (as opposed to sentence- or proposition-
oriented) when dealing with simple declarative sentences, but as soon as if-
thens, negations or queries are involved, the DRS construction rules crucially
rely on syntactic sentence boundaries (sentence final punctuation) as a trig-
ger for DRS embedding. Non- syntactic intersentential links, for example
modal subordination, are ignored.

6.4 Loop removal

In the present implementation, a sentence such as

Every gray donkey is an old donkey.

goes into extended Prolog as

donkey(X), old(X) ::- donkey(X), gray(X).

and is asserted as:
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donkey(X) :- donkey(X), gray(X).

old(X) :- donkey(X), gray(X).

The first of these clauses sends Prolog into endless recursion. A simple syn-
tactic readjustment rule needs to be added to remove loops of this type.
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