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Some theorists claim that language is produced by a special rule-processing
module located in the association areas of the human neocortex. However,
anthropological, neural, and comparative evidence suggests that language is
produced by general sensory and motor mechanisms that are common to all
mammals. On this view, the prior evolution of advanced cognition preadapted
general sensory and motor mechanisms for language. This thesis presents a
connectionist language model that is consistent with this hypothesis. The model
uses general sensory and motor mechanisms to understand and produce English
sentences. By doing so, it demonstrates that it is not necessary to postulate an
unprecedented new brain adaptation like a special rule-processing module in
order to explain language.
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Chapter I. Introduction

1.1   Two Theories of Language

How does the human brain produce language? There are at least two views
on this subject. The first comes from linguistics, rationalist philosophy, and
artificial intelligence. It asserts that the brain produces language by processing
the same sort of grammatical rules that linguists use to describe syntax. This is
done by what Chomsky (1980) calls a "language organ". He claims that just as
the heart is a separate blood-pumping module that operates on different
principles from the lungs, the language organ is a separate cognitive module that
operates on different principles from the rest of the brain. Thus, the way to
understand how language works is not to compare it to other brain systems; it is
to look at its observable behavior. The observable behavior of language is
rule-processing, so it is reasonable to hypothesize that the language organ works
by rule-processing as well.

A second, opposing view of language comes from biology, neuroscience, and
anthropology. It stresses that hypothesized neural mechanisms for language
should be consistent with what we already know about brain function and
cognitive evolution. One of the things we know is that full-blown language is a
recent phenomenon, not more than 200,000 years old (Lieberman 1984).
Advanced cognition is much older because Homo erectus was already making
stone tools, hunting in groups, using fire, and building shelters 1.5 million years
ago (Donald 1991). This implies that the evolution of language may have
depended on the prior existence of a rich cognitive structure. One way that this
might have happened is if cognition made it possible for evolution to co-opt
existing neural mechanisms to produce language. This sort of co-opting is called
preadaptation: a structure or function that originally served one purpose is
recruited for a new one. For example, the lungs evolved from the swim bladders
of fish through a process of preadaptation. In the case of language, the likely
preadapted neural mechanisms are those for sensory perception and motor
action (Kimura 1979; Lieberman 1984). These are the most basic functions of any
nervous system because an organism must be able to sense relevant changes in
its environment and make appropriate motor responses in order to survive. They
are related to language in that language includes both a sensory component
(speech comprehension) and a motor component (speech production). This
suggests that general sensory and motor mechanisms may have been preadapted
for language by the evolution of advanced cognition. I will call this idea the
sensorimotor preadaptation hypothesis.
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1.2   A Connectionist Model

In this thesis, I present a connectionist language model that is consistent with
the sensorimotor preadaptation hypothesis. My purpose is to show that basic
connectionist principles of association can explain how general sensory and
motor mechanisms could have evolved into language. This is an exercise in
plausibility rather that proof. Given our present understanding of the brain, we
cannot prove that any mechanistic theory of language is true; however, in
chapter III, I do show that the sensorimotor preadaptation hypothesis is
consistent with several lines of empirical evidence, while Chomsky's language
organ hypothesis is not. Therefore, it is possible that a theory like the one
modeled here will turn out to be correct.

The basic principle underlying the model is that language has two parts: a
cognitive part and a sensorimotor part (see figure 1.1). The cognitive part is
descended from the advanced cognitive apparatus that existed before language.
It is assumed to be heavily dependent on vision, since visual areas occupy over
half of the primate neocortex (Sereno 1991). The model assumes that the
cognitive part exists, but it does not try to explain how it works. Since cognition
probably involves most of the brain, it would be difficult to construct even a
simplified account of it. Such an account will probably be necessary for
understanding the semantic and pragmatic aspects of language, but, for
understanding the contributions of sensory and motor mechanisms, it is not.
Therefore, the model represents cognition abstractly by using thematic
role/filler pairs like Agent=cat and Action=meow as stand-ins for the actual
high-level representations used by the brain (Fillmore 1968). The idea is that
Agent=cat corresponds to the brain having a neural picture of a cat, real or
imagined, in some higher-order visual area.

The model uses these cognitive role/filler pairs to explain the sensorimotor
part of language. The purpose of this part is to link cognition to a set of
prelinguistic sensory and motor mechanisms. This linking function is performed
by three neural networks. The first is a sensory network that translates language
inputs into a high-level cognitive representation. Its takes a sequence of words as
its input, and it produces a set of thematic role/filler pairs and surface features
as its output. The second is a motor network that translates a high-level cognitive
representation into language outputs. It takes a set of thematic role/filler pairs
and surface features as its input, and it produces a sequence of motor actions
representing words as its output. Finally, the third network is what Jordan and
Rumelhart (1992) call a forward model. Its purpose is to predict the sensory
consequences of motor actions. The input to the forward model is a set of motor
actions from the output of the motor network, and its output is a prediction of
the sensory consequences of those actions. As will be discussed below, these
predictions are used in motor learning.
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1.3   Organization of this Thesis

Chapter I has explained the motivation for the hypothesis that preadaptation
of general sensory and motor mechanisms led to the evolution of language, and
it has introduced the connectionist model that will be presented in this thesis.
Chapter II discusses previous connectionist language models and their
relationship to the present one. Chapter III presents empirical evidence
supporting the sensorimotor preadaptation hypothesis and, by extension, the
model. Chapter IV discusses general sensory and motor mechanisms and
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Figure 1.1. A schematic diagram of the model. The model includes three components (in dashed
box): a sensory network, a motor network, and a forward model. The function of each is indi-
cated in italics. Other components are hypothesized brain structures that are not explicitly
modeled.



explains how they might produce language. Chapter V presents the model in
more detail. It examines the architecture of the connectionist networks used, how
they process sentences, and how they learn. Chapter VI explains how the model
was trained and presents the training results. Finally, Chapter VII discusses
what has been accomplished.
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Chapter II. Related Work

There are generally two sorts of connectionist language models. Computer
science models are concerned with achieving good performance on some
difficult problem in natural language processing. The question that they ask is,
How can a computer mimic the human capacity for language? They are
successful if they achieve the desired computational result, even if they achieve
it differently from the way that people do. On the other hand, psychological
models attempt to explain some aspect of human language behavior. They ask,
How can a neural network simulate the mental processes that people use to
produce language? They are successful if they provide a convincing explanation
for the observed behavior, even if the mechanisms that they use are
computationally inefficient.

The dividing line between the two sorts of models is not absolute. Computer
scientists have produced a number of models with interesting psychological
properties, and psychologists have developed many of the computational
techniques that are used in neural network research. However, the psychological
models are closer in spirit to the one presented here, so this review will
concentrate on them. Jain (1991) discusses the more computationally oriented
work in his recent Ph.D. thesis, which is also an excellent example of the state of
the art in connectionist parsing.

2.1   Spreading Activation Models

One class of language models is based on spreading activation. In these
models, concepts are represented locally, by individual units, and relationships
between concepts are represented by weighted links. Processing consists of
several cycles during which the units pass activation back and forth. Typically,
the model settles into a stable state that represents a coherent interpretation of
the input conditions. This is a form of constraint satisfaction: the network units
work in parallel to satisfy the set of constraints specified by the weights. These
are soft constraints, meaning that they may not all be satisfied. Instead, the
network may settle into a stable state that represents a compromise between two
or more conflicting constraints. The strength of these models is that they offer an
explanation for how people make judgments in the face of uncertain or even
contradictory information. One weakness is that the constraints are usually set
by hand, although there are automatic learning procedures for such models.1

One of the first models to apply spreading activation to language was
Cottrell and Small's (1983) model of word sense disambiguation. This model is

1 For instance, Boltzmann learning (Hinton and Sejnowski 1986).
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based on the interactive activation
architecture introduced in
McClelland and Rumelhart's (1981)
model of letter perception. As shown
in figure 2.1, Cottrell and Small's
model uses separate subnetworks to
represent lexical features, word
senses (i.e., baseball bat versus flying
bat), case roles, and syntactic
features. Connections within each
subnetwork are mutually inhibitory,
so alternative senses of the same
word suppress each other.
Connections between consistent units
in different subnetworks are
excitatory, so they reinforce each other. During processing, activation flows from
the lexical units, through the word sense units, to the case role and syntactic
units. An entire sentence is presented to the lexical level in parallel, and different
word senses compete for activation by forming clusters of consistent units. The
appropriate set of word senses usually wins this competition because it receives
the most input from the lexical level and the most reinforcement from the case
role and syntactic levels.

Waltz and Pollack (1985) used a similar network architecture to account for
context effects in forming semantic interpretations. The principal difference
between their model and Cottrell and Small's is that they use an additional set of
context units to represent clusters of related words. For instance, the context unit
for hunting is connected to the lexical units for fire, deer, and bullet. Their model
uses these context units to produce different semantic interpretations for words
depending on the surrounding context. For example, using the hunting unit, the
model can decide that the word bucks refers to deer rather than dollars in the
sentence John shot some bucks.

At a higher level, Kintsch's (1988; Kintsch and Welsch 1990)
construction-integration (CI) model uses spreading activation to simulate the
mental processes involved in reading and remembering a text. Kintsch has
devised a procedure for automatically generating CI networks from texts. These
networks consist of nodes representing the text propositions and links
representing the relationships between the propositions. When Kintsch spreads
activation through these networks, he finds that nodes representing propositions
that people remember well become highly activated. Britton and Eisenhart (in
press) have also found that a similar model captures some of the differences
between mental representations generated by subject-matter experts and novices
from reading a text.
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2.2   Feedforward Models

Feedforward networks usually contain an input layer, an output layer, and
one or more hidden layers. In the input and output layers, units represent
particular concepts. In the hidden layers, units store intermediate computations.
The weights connecting the layers are set using a supervised learning procedure
like backpropagation (Rumelhart, Hinton, and Williams 1986). During
processing, activation spreads forward from the input layer, through the hidden
layers, to the output layer. One disadvantage of this architecture is that it has no
memory; the activation values produced on one cycle cannot spread back
through the network to influence those produced on a later cycle. In language
models, this problem is typically overcome by using a time-sliced architecture in
which several sets of input units are used to represent the input to the network at
different points in time. However, this arrangement has the disadvantage that it
arbitrarily limits the length of input sequence, so it is not an ideal solution.

One feedforward model is Rumelhart and McClelland's (1986) model of past
tense learning for English verbs (see figure 2.2). They use a four-layer network
that takes a phonological representation of the root form of a verb as its input
and produces a phonological representation of the past tense as its output. The
two interior layers of the network represent the root form and the past tense as a
collection of context-sensitive phonemes called Wickelphones (after Wickelgren
1969). Each Wickelphone represents a phoneme, its predecessor, and its
successor. For example, the a sound in cat is represented by the Wickelphone kat.
The input and output layers are connected to their Wickelphone layers by a pair
of fixed-weight coding networks, and the two Wickelphone layers are connected
by an adjustable-weight associative network. During training, the root form is
presented to the input layer at the same time that the past tense is presented to
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the output layer. Both layers spread activation through their coding networks to
their Wickelphone layers, and the perceptron convergence procedure (Rosenblatt
1962) is used to form an association between the two Wickelphone encodings.
Later, when the input pattern is presented alone, this association allows the
model to recall the output pattern. One interesting aspect of this model is that it
learns past tense forms in the same three-stage order that children do. The model
also generalizes regular forms to new verbs that it has not seen before, and it
goes through a period when it overgeneralizes, applying its generalization rules
too liberally, just as children do.

McClelland and Kawamoto (1986) used a similar two-layer model to translate
the surface structure of a sentence into a set of case roles. Both layers represent
words as a distributed set of multivalued semantic features like Form, Gender,
Breakability, and so on.  Each word has its own characteristic pattern of features.
For example, the word cheese includes the features Form=2-D, Gender=neuter,
and Breakability=unbreakable. The input and output layers encode these feature
patterns with units that represent all possible pair of features. This is done so
that the model can use combinations of features for learning without needing a
hidden layer.1 The feature pattern for each content word in a sentence is
presented to the input layer, arranged by surface position. During training, a
semantic training signal is presented to the output layer as a similar set of
feature patterns, arranged by semantic case. The model then learns to associate
the surface form with its semantic cases using the perceptron convergence
procedure to change the weights. After training, the model is able to produce the
contextually appropriate meaning of a word, choose the correct verb frame, fill
in missing arguments with default values, and generalize to sentences with new
words.

2.3   Recurrent Network Models

Unlike feedforward networks, recurrent networks have feedback connections
that let them store contextual information. For language processing, this means
that the previous words in a sentence can influence the interpretation of later
ones. Consequently, recurrent networks have become popular in language
processing. Most models are based on Jordan's (1986) recurrent network
architecture (see figure 2.3) or a slight variant, the simple recurrent network
(SRN) introduced by Elman (1990). The advantage of this architecture is that it
uses fixed-strength feedback connections, so it can be trained with standard
backpropagation. There are learning algorithms for recurrent networks with
variable-strength feedback connections (e.g., Williams and Zipser 1989), but they
tend to be computationally expensive. There are also more powerful recurrent
architectures (see Mozer 1993 for a review), but they have not been used in
language models.

1 This was before backpropagation (Rumelhart, Hinton, and Williams 1986), so there was no
known way to adjust the weights of a hidden layer.
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Elman (1990) showed that an SRN could learn to identify low-level
constituents in a sequence of language inputs. In one experiment, he took 200
sentences and concatenated them together to produce a single list of 4,963 letters.
He then used this list as input to an SRN that he trained to predict the next letter
in the sequence. What he found was that the network predicted the first letter in
a word poorly, but it did much better on subsequent letters. This shows that the
network learned to use information implicit in the order of letters in words to
learn the task. In a second experiment, Elman trained an SRN on a set of
sentences concatenated together to produce a very long list of words. When he
trained this network to predict the next word, he found that its output
approximated the likelihood ratios for the possible next words. This shows that
the network learned the semantic categories that Elman used to generate his
sentences. Elman also confirmed this finding by performing a cluster analysis on
the activations generated by the hidden units. This showed that words from
similar semantic categories produced similar hidden unit activation vectors,
indicating that the network had learned those categories.

St. John and McClelland (1990) used a two-part model to perform thematic
role instantiation. The first part of their model forms what they call a sentence
gestalt. This is just the output of a Jordan-style recurrent network, trained to
produce a semantic representation of an input sentence. The sentence gestalt is
then fed into second part of their model, a decoding network, which probes it for
thematic role/filler information. The whole model is trained by presenting a
sentence to the sentence gestalt network, and asking it a question with the
decoding network. The error signal from the decoding network's answer is used

9
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to train the model by backpropagation. Recently, St. John has extended this
approach to text comprehension (St. John 1992a) and language behavior during
the performance of a task (St. John 1992b).

2.4   Relationship to the Present Model

The model presented in this thesis is like St. John and McClelland's (1990) in
that it uses a recurrent network to map sentences onto a semantic role/filler
representation. One difference between the two is that St. John and McClelland's
model only uses the content words from a sentence as input. For example, it
would abbreviate the waitress hit the thief with the purse as waitress hit thief purse. In
the current model, the entire sentence is used as input.

Another difference is that, like all connectionist language models that I know
of, St. John and McClelland's addresses the receptive component of language but
not the productive component. Their model learns to understand sentences, but
not to produce them. This seems to be part of a general tendency in psychology
to emphasize the cognitive role of sensation and perception to a much greater
extent than that of motor action, even though they seem to be two sides of the
same coin. The current model simulates both language comprehension and
production.

10



Chapter III. Empirical Evidence

The model presented here is based on a specific hypothesis, the sensorimotor
preadaptation hypothesis, that predicts how language evolved and how it is
produced in the brain. Accordingly, the empirical validity of this hypothesis is
as important for the success of the model as the results that it produces. The
empirical evidence for the sensorimotor preadaptation hypothesis falls into three
categories:

1. Anthropological evidence which demonstrates that language
evolved after advanced cognition.

2. Neurological evidence which shows that sensory and motor
processing are the primary functions of the neocortex of all
mammals, including humans.

3. Comparative evidence from the study of American Sign
Language which shows that language can occur in sensorimotor
modalities other than the usual auditory-vocal ones.

Each point is examined in more detail below.

3.1   Anthropological Evidence

If language evolved from the preadaptation of existing sensory and motor
mechanisms, then hominids (members of the genus Homo, which includes
humans) must have developed relatively advanced cognition before they
developed language. Based on fossil, genetic and biochemical evidence, it is
estimated that the hominid line diverged from the line that has led to
chimpanzees 5 million years ago (Sarich 1980). In that time, hominid evolution
has displayed two general trends. The first is towards increasing cultural
sophistication. This is shown by archeological evidence for toolmaking, group
hunting, the use of fire and shelters, and cave painting. The second trend is the
development of a number of uniquely human anatomical specializations. The
most obvious of these is an increase in brain size. Others include the
development of erect posture, changes in hand anatomy, and the specialization
of the vocal tract for speech. These changes did not occur continuously; they
happened in abrupt jumps followed by long periods of gradual change. Based
on these jumps, it is possible to construct a time-line for the major events in
hominid evolution (see table 3.1).

The first major jump came with the australopithecines, about 4 million years
ago. Their precise relationship to the hominid line is controversial, but it is
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nearly certain that either the australopithecines were direct ancestors of the
hominids or the two shared a common ancestor. In the latter case, the common
ancestor probably possessed those traits which are common to both lines, so it is
safe to assume that the hominid ancestors of that era had the adaptations found
in australopithecines. The major change that occurred in the australopithecines
was bipedalism. This meant adopting a less efficient means of locomotion and
abandoning the safety of the trees. Australopithecines seem to have compensated
by developing a more complex, cooperative social structure. They apparently
did not compensate by being smarter. Their encephalization quotient (EQ), the
ratio of their brain size to that of an average mammal of equivalent weight,
remained within the range found in the great apes (Donald 1991), and they did
not develop toolmaking. However, changes in australopithecine social
organization probably set the stage for cognitive advances in later hominids.

The first major increase in brain size came with the earliest hominids, called
Homo habilis, about 2 million years ago. Their EQ increased by about 30% over
that of australopithecines, and they began to use primitive stone tools. However,
habilis may not have been a true hominid species. Its members retained the
overall build and facial features of the australopithecines, and the evidence
concerning their EQ and tool-use is not certain. Habilis may really have been a
transitional species between australopithecines and hominids.

12

Table  3.1. Approximate time-line for hominid evolution, in years before present. After Donald
(1991).

5 million years: Hominid line and chimpanzee split from a common ancestor

4 million years: Oldest known australopithecines
erect posture
shared food
division of labor
nuclear family structure
larger number of children
longer weaning period

2 million years: Homo habilis, oldest known hominids
crude stone-cutting tools
larger brain size

1.5 million years: Homo erectus
much larger brain
more elaborate tools
migration out of Africa
seasonal base camps
use of fire, shelters

0.2 million years: Homo sapiens
second major increase in brain size
vocal tract assumes modern form
first advanced cave paintings

0.05 million years: Fully modern humans



The situation is much clearer with Homo erectus, who first appeared 1.5
million years ago. With erectus EQ increased by another 20%, and the physical
appearance of hominids began to assume a much more human form. Erectus
made significant cultural advances as well. One of these was the development of
the Acheulian toolkit, which remained in use for over a million years and has
been found in sites across Eurasia and Africa. Others were the use of fire,
shelters, and seasonal base camps, and migrating long distances. Crucially
however, erectus does not seem to have developed language. Based on
anatomical reconstructions, Lieberman (1984) concluded that erectus lacked the
elevated vocal tract that allows modern humans to produce speech; therefore,
the rapid abstract communication that characterizes human language would
have been impossible. Furthermore, the subsequent elevation of the vocal tract in
Homo sapiens coincided with a cultural explosion that suggests the introduction
of some important new social element (i.e. language), so it is likely that erectus
did not have speech. As Donald (1991) suggests, erectus' own cultural advances
may have been facilitated by some sort of prelinguistic communication system
based on prosody.

The final jump in the evolution of the hominid line came with the emergence
of Homo sapiens about 200,000 years ago. Brain volume increased by 20% to its
present size, and the rate of cultural change began to accelerate continuously.
Toolmaking improved gradually within the Mousterian culture that appeared
about 100,000 years ago, then it was revolutionized in the Mesolithic and
Neolithic cultures that followed. Language became possible when the vocal tract
developed its modern form sometime between 100,000 and 200,000 years ago.
Thus, it appears that language appeared contemporaneously with the final jump
in hominid cognitive evolution.

What does all of this mean for the sensorimotor preadaptation hypothesis?
The hypothesis claims that the prior existence of advanced cognition preadapted
existing sensory and motor mechanisms for language. Homo erectus had over 80%
of the brain volume of modern humans, an advanced toolmaking culture, and a
cooperative social structure, yet he did not have language. So the time-line of
hominid evolution is consistent with the sensorimotor preadaptation hypothesis.
On the other hand, Chomsky's language organ hypothesis makes no prediction
about the course of hominid evolution. Since it claims that language is an
independent cognitive module, there is no reason why language had to evolve
after cognition. It might just as well have been the australopithecines who
developed language. Therefore, the language organ hypothesis fails to account
for the evidence on hominid cognitive evolution.

3.2   Neurological Evidence

The cerebral cortex is the outermost part of the vertebrate brain. Those parts
which are most developed in mammals are called the neocortex. This neocortex
appears to be the site of all high-level cognitive functions, including language in
humans. The neural circuits underlying these cognitive functions are not well
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understood, but some basic organizational principles of the neocortex are. Since
the sensorimotor preadaptation hypothesis and Chomsky's language organ
hypothesis claim that language is based on qualitatively different sorts of neural
mechanisms, one way to evaluate them is to compare their hypothesized
mechanisms with those suggested by the empirical results on neocortical
organization.

One principle of neocortical organization is that the neocortex consists
primarily of a number of unimodal sensory, motor, and limbic (motivational)
areas. Primitive mammals have a small number of these areas, while carnivores
and primates have more (Kaas 1987). The number of visual areas becomes
especially large in primates. For example, monkeys have about 25 visual areas
which consume over half of the neocortex (Felleman and Van Essen 1991). There
are also a number of polymodal association areas with connections to multiple
unimodal areas. At one time, it was thought advanced mammals had larger
neocortices because they had larger association areas between their primary
sensory and motor areas. It is now known that this is false. Carnivores and
primates do have more cortex between their primary sensory and motor areas
than primitive mammals like hedgehogs and rodents, but this extra cortex is
taken up by larger and more numerous unimodal sensory and motor areas
rather than larger association areas (Sereno 1991; Kaas 1987). Phylogenic trends,
anatomical comparisons using fixed tissue, and PET1 studies on live subjects
suggest that this is true for humans as well (Sereno 1991). This is significant
because theorists like Chomsky who claim that human cognition is produced by
a number of uniquely-human brain modules traditionally assume that those
modules are located in the association areas. If, as appears to be the case, human
association areas are not proportionally larger than those of other primates, then
it is not likely that they house a raft of new adaptations like Chomsky's language
module. On the other hand, the sensorimotor preadaptation hypothesis is
completely consistent with evidence that the neocortices of advanced mammals
have grown by adding new sensory and motor areas.

A second principle of neocortical organization is that the neocortex has a
basic local structure that is repeated in all areas. If it is laid out as a flat sheet and
sliced vertically, a cross-section of the neocortex has six layers. These layers vary
in thickness between sensory and motor areas, and each area has its own pattern
of connections to other areas. However, the basic neocortical circuit, in terms of
cell types and the pattern of connections between layers, is similar for all areas
(Shepherd 1988). This is probably true because new cortical areas evolved
through the duplication of genes for existing ones (Allman 1990). Subsequent
functional modifications have almost certainly changed the computational
properties of local circuits, but it is unlikely that they have produced an entirely
new style of computation like grammatical rule-processing. This means that
Chomsky's prediction that the brain contains independent cognitive modules

1 Positron emission tomography (PET) is a technique for noninvasively monitoring activity
levels in different parts of the brain.
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that operate according to their own unique modes of processing is probably
false. Most likely, all areas of the neocortex share a common mode of processing,
which evolution has fine-tuned to perform particular functions, as the
sensorimotor preadaptation hypothesis predicts.

3.3   Comparative Evidence

Language first evolved in the auditory and vocal modalities; however, they
are not the only ones in which it can occur. We are all familiar with one example
of this phenomenon: written language. The receptive component of written
language is visual rather than auditory, and the productive component uses
hand movements rather than movements of the vocal apparatus. But written
language is not too different from spoken language. Written words have a
one-to-one mapping onto spoken words, and both have a temporal order. This
means that the same neural mechanisms might be responsible for both.
Chomsky's language organ hypothesis can account for written language because
it follows the same rules as spoken language. Only the sensorimotor
transformations that connect the language organ to the world would have to be
different.

However, sign language is a bigger problem. American Sign Language (ASL)
is fully as complex as spoken language, but its structure reflects its visuospatial
orientation (Bellugi, Poizner, and Klima 1989, 1990). For example, ASL has a
well-defined syntax, but it is spatial rather than temporal. Signs are related to
each other by their location in space rather than the order in which they are
presented. Nominals can be associated with a particular spatial location, and
modifiers applied to that location. This evidence is incompatible with theories
like Chomsky's which postulate a special rule-based language processing center
in the brain. Such a center would be specialized for temporal auditory-vocal
rules, so it would be unable to handle the non-temporal syntax of ASL. On the
other hand, if language is based on general sensory and motor mechanisms, then
ASL's visuospatial orientation would naturally produce non-temporal rules.
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Table  3.2. Comparing the predictions of the two hypotheses to the empirical evidence.

Line of Evidence Language Organ
Hypothesis

Sensorimotor Preadapta-
tion Hypothesis

Empirical Evidence

Anthropological Language is indepen-
dent of cognition

Language depends on
cognition

Language evolved after
cognition

Neurological Rule-processing General sensory and
motor mechanisms

More and larger sensory
and motor areas
Small polymodal
association areas
Common local circuit

Comparative Auditory-vocal rules General sensory and
motor rules

ASL uses visuospatial
syntax



3.4   Evaluation

As shown in table 3.2, Chomsky's language organ hypothesis either makes
the wrong prediction or no prediction at all for each of the three lines of
evidence presented in this chapter, while the sensorimotor preadaptation
hypothesis makes the right prediction for all of them. Of course, this does not
prove that either the sensorimotor preadaptation hypothesis or the model
presented in this thesis is right, but it does mean that they are worth considering.
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Chapter IV. Sensory and Motor Mechanisms

At this point, I have presented evidence indicating that language is produced
by general sensory and motor mechanisms, but I have not said what those are.
Of course, there is a great deal that we don't know about the brain, so any
discussion of brain mechanisms must remain somewhat speculative. However,
based on what we do know, two mechanisms seem to be especially important in
sensory and motor processing: topographic maps and associative learning. In
this chapter, I explain (1) what each mechanism is, (2) why it seems to be
important, and (3) what function it may perform. Then I suggest how
topographic maps and associative learning might work together to produce
language. 

4.1   Topographic Maps

A topographic map is a systematically arranged collection of neurons with
similar response properties. The best known example is the map of the retina in
primary visual cortex. This map contains columns of cells that respond to bars of
light that strike the retina at particular angles. These 'bar detectors' are arranged
in groups, called hypercolumns, that each contain a full 360° worth of detectors
for a single retinal location. In other words, when a bar of light strikes the retina
at position (x,y) and angle θ , it triggers the θ -angle bar detector in the
(x,y)-position hypercolumn. These hypercolumns constitute a topographic map
because their arrangement in visual cortex preserves the neighborhood
relationships between their receptive fields in the retina.

We know that topographic maps are important in sensory and motor
processing because they have been found in nearly all sensory and motor areas
(Kandel, Schwartz, and Jessell 1991). This includes both primary sensory and
motor areas and higher-order ones. In primary areas, maps represent simple
stimulus properties like the angle of a bar of light, the frequency of a sound, or
the direction of force exerted by a particular muscle. In higher-order areas, maps
represent more abstract stimulus properties like the form of an object, the
relative pitch of a sound, or a complex pattern of muscle movements. 

The function of topographic maps seems to be to organize sensory and motor
information. In sensory topographic maps, each neuron combines information
from several lower-level neurons. This produces a classification of the
lower-level neurons' activity. For example, the bar detectors in primary visual
cortex classify their incoming retinal signals by deciding whether they represent
a bar of the appropriate angle or not. Connectionist networks can form similar
topographic maps by a process like competitive learning (Rumelhart and Zipser
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1985) in which groups of neurons compete for the right to represent a particular
input pattern (von der Malsburg 1973; Linsker 1986). This forces nearby units to
cooperate in order to win the competition; consequently, they learn to detect
similar input features. Oja (1982) has shown that this process is equivalent to a
principal component analysis of the lower-level activity patterns. The effect is
that, if the input patterns have some regular spatial arrangement, the output
units will form a sensory topographic map.

In motor topographic maps, each neuron sends information out to several
lower-level neurons. When the map neuron is active, it instructs the lower-level
neurons to execute a particular motor command. For example, neurons in a
motor map in the supplementary motor area send signals to the lower-level
premotor cortex that trigger complex movements like opening or closing a hand.
Thus, it seems that, where sensory topographic maps form classifications of their
lower-level input patterns, motor topographic maps generate lower-level
elaborations of input patterns in the map.

How do motor areas learn to form these elaborative maps? This is not
particularly clear. They cannot do it by statistically analyzing their input
patterns, as sensory maps seem to do, because their input patterns—the map
activations—cannot tell them which elaborations to produce. Instead, it seems
that motor areas must somehow use sensory feedback from the environment to
learn which lower-level motor actions should be produced by each map
command. I discuss one way that they might do this in section 4.3.2.

4.2   Associative Learning

Associative learning enriches sensory and motor information by forming
links between paired stimuli. Such links allows one stimulus to cue the recall of
another. For example, the smell of freshly-baked bread might remind one of its
taste. 

At least two sorts of evidence suggest that associative learning is important in
sensory and motor processing. First, behavioral evidence shows that we form
associations all the time. The bread example suggests that this is true for sensory
processing. In motor processing, familiar situations often trigger the recall of
associated motor patterns. For instance, when we become distracted while
driving a car, we all occasionally find ourselves following some familiar but
unintended route.

Second, there is a cellular form of associative learning that appears to have an
important role in sensory and motor processing. This mechanism, called
associative long-term potentiation (LTP),1 increases the strength of a synapse
whenever its presynaptic and postsynaptic neurons are active at the same time.
This is sometimes called Hebbian learning because, in 1949, the psychologist
Donald Hebb predicted just such a mechanism would responsible for associative

1 It is called associative LTP because there is also a non-associative version of LTP that is
found, for example, in the CA3 region of the hippocampus. In the non-associative version,
presynaptic input alone is sufficient to induce LTP; the postsynaptic cell need not already be
active.
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learning. LTP seems to be important for sensory and motor processing because it
occurs in the hippocampus (Kandel, Schwartz, and Jessell 1991), a brain
structure involved in the consolidation of episodic memories for storage in the
sensory, motor, and association areas of the cerebral cortex. Furthermore, LTP
probably occurs directly in cortical sensory and motor areas as well.

What function does associative learning serve? Primarily, it seems to give the
brain several ways of accessing the same information. For example, most people
can recall the taste of freshly-baked bread either by eating it or by smelling it. In
language, this capability might allow people to recall a high-level visual
representation of an object either by seeing it or by hearing a word that stands
for it. This will be discussed in more detail below.

4.3   Sensory and Motor Mechanisms in Language

How do topographic maps and associative learning relate to language?
Language has both a receptive component (comprehension) and a productive
component (speech). According to the sensorimotor preadaptation hypothesis,
the receptive component is implemented by sensory mechanisms that translate
speech sounds into semantic events, and the productive component is
implemented by motor mechanisms that translate semantic events back into
speech sounds. If topographic maps and associative learning really are the
fundamental sensory and motor mechanisms used by the brain, then they should
be able to produce language. Below I discuss how this might be done.

4.3.1   Speech Comprehension

When a child learns to understand a language, he has at least two external
sources of information available to him. First, he can hear sentences that
proficient language users produce. Even if these are actually sentence fragments,
as people tend to use in conversation, they give the child examples of what is
legal in his language. Second, the child can observe the visual scene that
accompanies each sentence. Since advanced cognition evolved before language,
most of the cognitive apparatus that he needs to interpret this scene probably
develops independent of language. If so, the child can use his interpretation of
the scene to supply the meaning for any sentence that relates to it.

This suggests that a child's brain can learn to translate sentences into
semantic events through a two stage process (see figure 4.1). First, it might form
a topographic map that classifies the pattern of words contained in a sentence.
This would have to be a temporal topographic map because a sentence is, unlike a
bar of light striking the retina, extended in time rather than space. Temporal
topographic maps do exist in nature, for instance in the auditory cortex of bats
(Suga 1988) and songbirds (Margoliash 1983; Konishi 1985), so it is likely that the
cortex can form such a map for sequences of words. In the figure, the
topographic map has translated the sentence the dog was bitten by the cat into a set
of surface features representing the phrase structure and voice of the sentence.
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Second, the child's brain might use an associative network to link the active
surface features in the topographic map to the active semantic features in the
current visual scene. For example, in the figure, the associative network has
linked the surface features for the sentence the dog was bitten by the cat to the
semantic event Agent=cat, Action=bite, and Theme=dog. The associative network
can learn to do this because both the sentence and the semantic event occur at the
same time; therefore, a learning mechanism like LTP can form an association
between them. However, there may also be some irrelevant semantic features
present. For instance, the cat might have bitten the dog next to a chair, but the
chair is irrelevant in the association process because it is not mentioned in the
sentence. LTP probably learns to ignore irrelevant associations through a
statistical averaging process that cancels them out over time.

4.3.2   Speech Production

When a child learns to produce speech, he has the same two sources of
external information available to him as in speech comprehension: sentences that
he hears and the corresponding semantic events. However, his learning task has
changed. Now instead of matching up a sentence that he hears with a semantic
event, he must learn to match up a semantic event with a sentence that he
produces. At first glance, it seems the child's brain might do this through a
two-stage process like the one used in speech comprehension (see figure 4.2).
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Figure 4.1. How the brain might use general sensory mechanisms to generate receptive
language.



First, an associative network would learn to link the active semantic features in
the current visual scene to the active surface features in a motor topographic
map. For example, in the figure the associative network has translated the
semantic event Agent=cat, Action=bite, and Theme=dog into the surface features
for the sentence the dog was bitten by the cat. Second, the motor topographic map
would elaborate on these features to produce a sentence. In the figure, it has
correctly produced the motor actions for the dog was bitten by the cat.

The problem with this scenario is that there is no way for the child's brain to
form the motor topographic map. The associative network can begin the learning
process by linking the active semantic features to some randomly selected set of
surface features in the motor map, but there is no way for the motor map to learn
which surface features should produce which words. It cannot learn through a
statistical process, as sensory maps seem to do, because that would reinforce
links between frequently paired surface features and motor patterns, even if the
motor patterns were wrong.

One solution to this problem is to use environmental feedback to evaluate the
sentences that the motor topographic map produces. This can be done by
maintaining a forward model that links motor commands with their expected
sensory consequences (Jordan and Rumelhart 1992). This forward model is an
associative network that learns to predict the speech sounds that are produced
by a set of motor actions (see figure 4.3). It is called a forward model because it
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Figure 4.2. One way that the brain might use general motor mechanisms to generate productive
language. This approach fails because there is no way to correct mistakes made by the topo-
graphic map.



predicts forward, from causes to effects, rather than backward, from effects to
causes. An associative network can learn to perform this function because every
time a child speaks, he can hear the sounds that he produces. Thus, the forward
model can learn by matching up the motor commands that produced a speech
act with the sounds generated by environmental feedback. In the figure, the
child makes the motor actions for the dog was bitten by the cat, and he hears the
speech sounds for the same sentence. By forming associations for a number of
such examples, the forward model can learn to predict the speech sounds that
will result from any speech-producing motor action.

If speech production uses a forward model, the motor topographic map can
use sensory feedback from example sentences to learn to translate surface
features into words (see figure 4.4). In this scheme, when a child's brain hears a
sentence, it tries to silently imitate what it has heard. As before, the associative
network links the semantic event supplied by the current visual scene to a set of
surface features in the motor topographic map. The motor map then generates
some set of motor actions that produce a sentence. Initially, these motor actions
will be wrong. In the figure, the motor map has produced the sentence the dog
was kissed by the cat when it was trying to imitate the dog was bitten by the cat.
However, the motor map can now identify its error by feeding the motor actions
that it produces through the forward model to generate a set of predicted speech
sounds. It can then compare these predicted speech sounds to the actual ones in
the example sentence. The difference between the two is an error signal that can
be used to train the motor map. In the computer model presented in the next
chapter, this is done by backpropagation.
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Chapter V. The Model

5.1   Overview

In the computer model presented in this thesis, the speech comprehension
and production systems are combined to produce a single language model. As
shown in figure 5.1, this model has three components: a sensory network, a
motor network, and a forward model.1 The sensory network represents the
speech comprehension system. It translates sentences into semantic events and
surface features. For instance, it translates the sentence the cat bit the dog into the
semantic event Agent=cat, Action=bite, and Theme=dog and the surface feature
Voice=active. The motor network represents the speech production system. It
translates in the opposite direction. Given a semantic event and a set of surface
features, it produces the corresponding sentence. For the above example, it
would produce the motor actions for the cat bit the dog. The forward model
performs a function analogous to the one discussed for it in the last chapter; it
links the sensory and motor networks by predicting the sensory consequences of
a given motor action. For instance, when the motor network produces the action

1 I will always refer to the forward model by its full name to avoid confusion with the entire
computer model that is presented in this thesis, but I will occasionally refer to the computer
model as just "the model".
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Figure 5.1. The model has three components: a sensory network, a motor network, and a for-
ward model.
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for the word cat, the forward model predicts that the sensory consequences will
be the cat sound.

5.2   Architecture

In the last chapter, I suggested that the brain systems responsible for speech
comprehension and production each contain a topographic map and an
associative network. In the computer model, these two networks are simulated
by a single network that performs the same functions. For example, the
suggested speech comprehension system from the brain and the sensory
network from the computer model are illustrated in figure 5.2. The sensory
network produces the same semantic event as the associative network of the
brain system, in this case Agent=cat, Action=bite, and Theme=dog. It also
produces whatever surface features are necessary to identify the surface
structure of the sentence. In the brain, these features would be detected by the
topographic map. In this example, the sensory network produces the surface
feature/value pair Voice=passive, which distinguishes between the cat bit the dog
and the dog was bitten by the cat.

Why use a single connectionist network rather than a separate topographic
map and associative network? There are two reasons. First, existing
connectionist networks that form topographic maps are not suitable for language
processing. Connectionist paradigms like competitive learning (Rumelhart and
Zipser 1985) can form spatial topographic maps like the one found in primary
visual cortex, but they cannot form temporal topographic maps of the sort that

25

Agent = cat
Action = bite
Theme = dog

Voice = passive

The dog was bitten by the cat.

Child

Environment

Visual
Scene

Semantic
Event

Surface
Features

Sentence

Sensory
Network

Agent = cat
Action = bite
Theme = dog

The dog was bitten by the cat.

Child

Environment

Visual
Scene

Semantic
Event

NP = the dog
VP = was bitten
PP = by the cat
Voice = passive

Sentence

Associative
Network

Topographic
Map

(a) (b)
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might recognize patterns of words in a sentence. Also paradigms like
competitive learning can only form sensory topographic maps, not motor maps,
so they will not work for speech production.

Second, using single networks keeps the model simple. The model's purpose
is to illustrate how advanced cognition might have preadapted general sensory
and motor mechanisms for language, not to explain sensory and motor
processing. Accordingly, this level of detail seems most appropriate.

5.2.1   Sensory Network

The sensory network uses is a modified version of Jordan's (1986, see figure
2.3) recurrent network architecture, shown in figure 5.3. Each unit in the input
layer represents a word, and each unit in the output layer represents either a
thematic role/filler pair or a surface feature/value pair. The network
architecture differs from Jordan's in two ways. First, it uses separate state layers
for the hidden and output units. This keeps the contextual information in the
hidden layer separate from the semantic information in the output layer, helping
the network learn more efficiently. Second, it adds a set of direct connections
between the input and output layers. These help the network learn simple
relationships between words and meanings quickly. For example, the word cat
might mean Agent=cat or Theme=cat, but it cannot mean Action=meow. Using
direct connections between the input unit for word cat and the output units for
Agent=cat and Theme=cat cuts down on the number of word interpretations that
the network has to consider. This frees up the hidden units to process contextual
information.
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As shown in figure 5.3, the sensory network has 29 input units and 45 output
units. The input units represent all of the possible words in a sentence (see table
5.1). There is one input unit for each possible word.

The output units represent all of the legal thematic role/filler and surface
feature/value combinations (see table 5.2). There is one output unit for each
thematic role/filler pair or surface feature/value pair shown in the table. The
meaning of the individual thematic roles will be discussed in section 6.2. There
are only three surface features because those are enough to distinguish between
the alternative surface forms for any semantic event. The Voice surface feature
refers to whether a sentence is active or passive voice (e.g. the cat chased the dog or
the dog was chased by the cat). The Prep1 and Prep2 features identify the first and
second prepositions in a sentence. For example, the sentence the thief was hit by
the waitress with the purse would have Prep1=by and Prep2=with. In a sentence
with only one prepositional phrase, Prep2 is not instantiated, and in a sentence
with no prepositional phrases, neither Prep1 nor Prep2 is instantiated.

5.2.2   Motor Network

The motor network uses the same recurrent network architecture as the
sensory network (see figure 5.4), but the roles of the input and output layers are
reversed. In the motor network, the 45 input units represent the possible
thematic role/filler and surface feature/value pairs, and the 29 output units
represent the possible words in a sentence. The role/filler and surface
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Table  5.1. Words used in the model.

Nouns Verbs Prepositions Miscellaneous

billy club
bone
cat
dog
fist
mouse

policeman
purse
ring
thief
waitress

barked
chased
gave
given
hit
kissed

meowed
saw
seen
taken
took
talked

by
from
to
with

the
was

Table  5.2. Thematic role/filler and surface feature/value pairs used in the model.

Thematic Roles Surface Features

Action Agent Theme Source Goal Instrument Voice Prep1 Prep2

bark
chase
give
hit
kiss
meow
see
take
talk

cat
dog
policeman
thief
waitress

bone
cat
dog
mouse
policeman
ring
thief
waitress

cat
dog
policeman
thief
waitress

cat
dog
policeman
thief
waitress

billy club
fist
purse

active
passive

by
from
to
with

by
from
to
with



feature/value pairs and the words are the same as those for the sensory network
(see tables 5.1 and 5.2).

5.2.3   Forward Model

The forward model predicts the sensory consequences (represented by the
input to the sensory network) of a speech action (represented by the output of
the motor network). Since the sensory inputs and motor outputs use the same
word representation, the forward model only has to learn an identity mapping.
A very simple network architecture can learn to perform this task. As shown in
figure 5.5, the forward model uses a two-layer feedforward network. Each layer
has 29 units. The input layer is just the output layer from the motor network.
This means that every time the motor network produces a command to 'say'
some word, the forward model uses the same command to predict the sensory
consequences. The output layer of the forward model has the same unit layout as
the input layer of the sensory network, but the two are physically separate.
Consequently, the output of the forward model can be compared to the input of
the sensory network to see if the forward model is making the right prediction.

5.3   Processing

Processing in both the sensory and motor networks involves a transformation
between a temporal representation and a spatial one. The temporal
representation is of the sequence of words in a sentence. In both the input layer
of the sensory network and the output layer of the motor network, units
represent individual words. A sentence is represented by a sequence of single
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word activations. For example, the sentence the thief was kissed by the dog is
represented by the sequence of unit activations shown in table 5.3. Each row
shows the unit activations for one time-step. On each time-step, only one word is
active—the word whose position in the sentence matches the time-step number.
For instance, the fourth word of the example sentence (kissed) is active at time 4.
In both the sensory and motor networks, processing continues for as many
time-steps as there are words in the sentence.

The spatial representation used by the sensory and motor networks is of the
semantic event and surface features for a sentence. In both the output layer of the
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Table  5.3. The temporal representation of the sentence the thief was kissed by the dog. (Not all
word units are shown.)

Word Unit

Time the cat dog thief purse ring chased hit kissed by was

1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

6 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

7 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0



sensory network and the input layer of the motor network, units represent
individual thematic role/filler and surface feature/value pairs. A semantic event
and a surface form for a sentence are represented by activating all of the
appropriate units at the same time. This is a spatial representation because the
pattern of activations is extended in space rather than time. For example, the
semantic event and surface features for the sentence the thief was kissed by the dog
are represented by the pattern of activations shown in table 5.4. The sensory
network has to produce this spatial pattern from the temporal representation of
the corresponding sentence, and the motor network has to use this spatial
pattern to produce the temporal representation for the same sentence.

5.3.1   Sensory Network

Processing in the sensory network simulates what happens when a person
hears and understands a sentence. The input to the sensory network is a
time-varying pattern of activations representing a sentence, like the one shown
in table 5.3. In response, the sensory network turns on each thematic role/filler
and surface feature/value pair as its key word appears in the sentence. A key
word is one that identifies a particular filler or value. As an example, consider
the output for the sentence the thief was kissed the by the dog, shown in table 5.5.
The key word for the Action role is always the verb from the sentence (in this
case kissed), so Action=kiss is activated at time 4, when kissed appears in the
sentence. The key word for the other thematic roles is always the noun from the
corresponding noun phrase. For example, the key word for the Theme is thief, so
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Table  5.4. The spatial representation of the thematic role/filler and surface feature/value
pairs for the sentence the thief was kissed by the dog. (Not all units are shown.)

Agent Action Theme Voice Prep1

cat dog thief bark kiss give cat dog thief active passive by to

0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 0.0

Table  5.5. The output of the sensory network for the thief was kissed by the dog. (Not all output
units are shown.)

Agent Action Theme Voice

Time cat dog thief bark kiss give cat dog thief active passive

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0

4 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0

5 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0

6 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0

7 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0



the network should activate Theme=thief at time 2. However, there is a slight
problem here. The initial noun phrase in a sentence is ambiguous; the thief could
also begin the sentence the thief kissed the dog, in which case we would have
Agent=thief not Theme=thief. In situations like this, the network guesses which
role to activate based on its past experience with similar sentences. Here, it
guesses that the thief means Agent=thief, which is wrong. It sees this at time 3,
when the word was tips it off that the sentence is passive voice. The network
then corrects itself and activates Theme=thief instead of Agent=thief.

Processing continues for as many time-steps as there are words in the input
sentence. On each time-step, activation flows through the layers of the recurrent
network as shown by the arrows in figure 5.3. The hidden and output units are
activated according to the standard logistic function

activation = 1
1 + e−(netinput+bias)

where

netinput =
i

Σ activationi ⋅ weighti

and i ranges over all of the units connected to a particular hidden or output unit.
At time t+1, each state unit is activated according to the function

activation(t + 1) = activation(t) ⋅ decay + reccurrent_input(t)

where decay is a parameter between 0 and 1 that determines the rate at which the
memory trace dies out, and recurrent_input is the activation of the state unit's
hidden or output unit. The decay is 0.0 for the hidden state units and 0.6 for the
output state units.

5.3.2   Motor Network

Processing in the motor network simulates what happens when a person has
an idea and produces a sentence for it. The input to the motor network is a
semantic event, representing the idea, and a set of surface features, representing
the surface form that the person wants to use. Each thematic role/filler pair in
the semantic event and surface feature/value pair in the surface form is clamped
on at time 1. The network then runs for as many time-steps as it takes to
complete the sentence. For example, the input to the motor network for the
sentence the thief was kissed by the dog is shown in table 5.6. The semantic event is
Agent=dog, Action=kiss, and Theme=thief, and the surface features are
Voice=passive and Prep1=by. Those input units are clamped on for all 7
time-steps that it takes to produce the sentence, and all of the other input units
are clamped off.

The output of the motor network is a sequence of motor actions that produces
the sentence. For example, table 5.7 shows the output from the trained motor
network for the sentence the thief was kissed by the dog. There is no problem with
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ambiguity here because all of the input units are clamped on or off at time 1.
This means that the output unit for the correct word on each time-step is usually
the only one activated. However, sometimes the network does not produce an
activation of exactly 1.0 for the correct output unit. Here it has produced an
activation of only 0.6 for kissed at time 4. This indicates that the network is still
making some mistakes.

Processing follows the same rules as in the sensory network. Activation
spreads out from the input units in the directions shown by the arrows in figure
5.4. Hidden and output units are activated according to the standard logistic
function, and state units are activated using Jordan's recurrent activation
function. The decay is 0.0 for both the hidden and output state units.

5.3.3   Forward Model

Processing in the forward model uses the motor actions from the speech
production system to predict the sensory consequences heard by the speech
comprehension system (see figure 5.5). The input to the forward model is a word
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Table  5.6. The input to the motor network for the thief was kissed by the dog. (Not all units are
shown.)

Agent Action Theme Voice Prep1

Time cat dog thief bark kiss give cat dog thief active passive by with

1 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 0.0

2 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 0.0

3 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 0.0

4 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 0.0

5 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 0.0

6 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 0.0

7 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 0.0

Table  5.7. The output of the trained motor network for the thief was kissed by the dog. (Not all
output units are shown.)

Output Unit

Time the cat dog thief purse ring was hit kissed by was

1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0

5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

6 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

7 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0



produced by the motor network. The forward model then activates its own
output unit for the same word. This unit should have the same position in the
output layer of the forward model as the corresponding word unit does in the
input layer of the sensory network. For example, consider what happens on
time-step 5 when a person says the waitress gave the cat the mouse. The motor
network produces the word cat. This might be, leaving out some units,
represented by the motor output vector <1,0,0,0,0>. If this motor command is
executed and the person says the word, the sensory network will hear the word
cat through feedback from the environment. This might be represented by the
sensory input vector <0,1,0,0,0>. The forward model takes the motor output
vector <1,0,0,0,0> as its input, and it produces the vector <0,1,0,0,0> as its output.
In this way, it predicts the sensory consequences of a motor action.

During processing, the forward model spreads activation forward from its
input units (the motor output units) to its output units. Its output units use the
linear activation function

activation = Σ
i

activationi ⋅ weighti

where i ranges over all of its input units.

5.4   Learning

The computer model learns in two stages: a babbling stage and an imitation
stage. The babbling stage is like the period like that children go through when
they talk a lot but do not actually produce any words. The computer model uses
this stage to train its sensory network and forward model. The sensory network
is trained when the computer model hears a sentence. It learns by forming an
association between this sentence and the semantic context in which it occurs.
The forward model is trained when the computer model babbles. It learns by
associating the motor actions that produced the babble with the sensory
consequences that the babble generates.

The imitation stage begins once the sensory network and the forward model
are trained. This stage is like the ones that children go through once they are able
to form actual words. The motor network learns during this stage by imitating
sentences that the computer model hears. The computer model does not actually
say a sentence when the motor network imitates it; instead, the computer model
feeds the motor output for the sentence through the forward model to predict
what it would have sounded like. This prediction is then compared to the
sentence that the sensory network actually heard, and the difference between the
two is used to correct any mistakes made by the motor network.

5.4.1   Sensory Network

The sensory network uses standard backpropagation (Rumelhart, Hinton,
and Williams 1986) to learn to translate sentences into semantic events and
surface features. During training, each word in a sentence is presented to the
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network sequentially. On each time-step, the target vector includes those
role/filler pairs and surface features whose key words have already appeared in
the sentence. For example, the sequence of target vectors for the sentence the
policeman talked to the waitress is shown in table 5.8. Only Agent=policeman is
active at time 2, but Action=talk and Voice=active are also active at time 3.

On each time-step, the network is trained to produce the appropriate target
vector. The error for each output unit is given by the function

error = (target − activation) ⋅ activation ⋅ (1 − activation),

and the error for each hidden unit is

error = activation ⋅ (1 − activation) ⋅ Σ
i

errori ⋅ weighti

where i ranges over all of the output units that the hidden unit connects to. At
time t, each weight is changed according to the function

∆weight(t) = ε ⋅ error ⋅ activation + α ⋅ ∆weight(t − 1)

where ε is the learning rate and α is the momentum.1 The network was trained
with an ε of 0.2 and an α of 0.9. The training results are presented in chapter VI.

5.4.2   Forward Model

The forward model uses a modified form of backpropagation to learn to
associate motor actions with their sensory consequences. On each learning trial, a
babble is generated by assigning a random value between 0 and 1 to each motor
output unit (see table 5.9). This babble is then converted into a set of sensory
consequences. Since the motor output units and sensory input units use the same
word representation, the sensory consequences are identical to the motor babble.

1 The momentum term dampens oscillations in the weights. See Rumelhart, Hinton, and
Williams (1986) for details.
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Table  5.8. The sequence of sensory network target vectors for the sentence the policeman
talked to the waitress.

Agent Action Goal Voice Prep1

Time cat thief policeman chase talk thief waitress active passive by to

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 0.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0

4 0.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0

5 0.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0

6 0.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 0.0 0.0 1.0



The forward model is then trained using these sensory consequences as the
target vector. The error for each output unit is

error = target − activation.

This function is different from the one used by the sensory network because the
forward model uses linear output units. The weights are changed in the same
way as in the sensory network, except that each weight is restricted to the range
from -1.0 to +1.0. This keeps the weights from growing unreasonably large, as
weights into linear units are prone to do.

5.4.3   Motor Network

The motor network is trained during the imitation stage, after the sensory
network and forward model have already been trained. The learning situation is
that a child hears a sentence that refers to the current semantic event, and he
silently imitates that sentence (see figure 5.6). The input to the motor network
comes from two sources. First, the child gets the semantic event from the current
visual scene. This is a non-temporal signal because all of the elements of the
visual scene are present at the same time. Second, the child gets the surface
features for the sentence from the output of the sensory network.1 This is a
temporal signal because the sensory network activates each surface
feature/value pair as its key word appears in the sentence. For example,
consider the motor network input for the sentence the cat chased the dog, shown in
table 5.10. The three active thematic role/filler pairs—Agent=cat, Action=chase,
and Theme=dog—are all clamped on at time 1, but the sensory network does not
activate the surface feature/value pair Voice=active until time 3, when the key
word chased appears in the sentence.

On each time-step, the motor network is trained to produce the appropriate
word of the sentence. Its target is the pattern of activations across the input units
of the sensory network. This pattern represents the sensory impression formed
by hearing the current word of the sentence. This target is used to train the
motor network by a process called distal supervised learning (Jordan and
Rumelhart 1992). First, the motor network tries to produce the current word of

1 Actual output from the sensory network was not used during motor training. Instead, the
target vector for the sensory network, which is a kind of idealized sensory output, was used.
The only reason for this was expediency.
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Table  5.9. A motor babble and the corresponding sensory consequences. (Not all words are
shown.)

Word

by cat chased dog meowed mouse the thief took was

Motor Babble 0.9 0.1 0.6 0.3 0.8 0.7 0.2 0.4 0.8 1.0

Sensory Consequences 0.9 0.1 0.6 0.3 0.8 0.7 0.2 0.4 0.8 1.0



the sentence. Then, rather than being executed, the motor actions for this word
are fed through the forward model. The output of the forward model is its
prediction of what the word would actually sound like if it were said. This
prediction is then compared to the actual sensory impression (the target) to
compute the error. In the example in figure 5.6, there would be an error on
time-step 3 because the motor network produced talked when it should have
produced chased. Finally, this error is backpropagated through the forward
model, without changing its weights, to calculate the error for each motor output
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Visual
Scene

Sensory
Network

Motor
Network

Forward Model

Surface Features

Agent = cat
Action = chase
Theme = dog

The cat chased the dog.

Voice = active

Child

Environment

The cat talked the dog.

Semantic Event

The cat talked the dog.

Sentence

Figure 5.6. During the imitation stage, the input to the motor network comes from the current
visual scene (the semantic event) and the sensory interpretation of the sentence (the surface fea-
tures). The training signal is the sensory impression of the sentence, backpropagated through the
forward model.

Table  5.10. The input to the motor network during training for the sentence the cat chased the
dog. (Not all units are shown.)

Agent Action Theme Voice Prep1

Time cat dog thief bark chase talk cat dog thief active passive by with

1 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

2 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

3 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0

4 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0

5 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0



unit, and the weights in the motor network are modified using standard
backpropagation.

The equations for distal supervised learning the same as those for standard
backpropagation, except that the error for the motor output units is calculated
using the hidden unit function

error = activation ⋅ (1 − activation) ⋅ Σ
i

errori ⋅ weighti

because the motor output units are acting as hidden units that feed into the
forward model. The motor network uses the same learning parameters as the
sensory network, a learning rate ε of 0.2 and a momentum α of 0.9.
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Chapter VI. Training and Results

6.1   Training Data

The model was trained on a corpus of English
sentences. These sentences were generated from
semantic events in a script using a unification-based
grammar. The steps in this process are depicted in
figure 6.1. First, a semantic event is chosen from the
script, in this case Agent=dog, Action=chase, and
Theme=cat. Next, the event is passed though the
unification-based grammar to generate all possible
sentences and their surface features. In this case,
there are two sentences: the dog chased the cat
(Voice=active) and the cat was chased by the dog
(Voice=passive, Prep1=by). Finally, the sentences,
surface features, and semantic events are encoded as
binary pattern vectors. These vectors are the training
data for the computer model.

As shown in table 6.1, the model uses a simple
set of six thematic roles. These are a subset of the
thematic roles used by Parsons (1990) and Covington (1992). Every event has an
Action and an Agent, and the semantics of the Action determine the other roles
that are used. As indicated in the table, all of the roles other than Action and

Semantic Event
Agent =  dog

Action =  chase
Theme =  cat

Surface Forms
The dog chased the cat.

The cat was chased by the dog.

Pattern Vectors
input = 010010110...
target = 100101100...

Unification-
Based Grammar

Pattern
Generator

Figure 6.1. Generating a corpus
of sentences and semantic
events.

Table  6.1. Thematic roles used in the model.

Role Explanation Surface Location

Action Thing done. Verb.

Agent Person or thing that causes an
event to occur.

Subject of an active sentence. Marked with by in
a passive sentence.

Theme Person or thing affected. Direct object of an active sentence. Subject of a
passive sentence.

Source Point of origin in an action in-
volving a transfer.

Indirect object. Marked by from.

Goal Destination in an action involv-
ing a transfer.

Indirect object in an active sentence. May be
subject of a passive sentence if no Theme is
present. Marked by to.

Instrument Means by which an action is
accomplished.

Object of with.
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Theme are marked by a unique preposition. For instance, dog is the Agent in the
sentence the cat was chased by the dog. Obviously, this oversimplifies the role of
prepositions in English. However, the language representation is only intended
to illustrate how the computer model works; it is not meant to be an accurate
model of English in its own right.

The unification-based grammar that translates semantic events into sentences
is encoded in a Prolog and GULP (Covington 1992) program. This program
generates all possible sentences for each event. The sentences are third-person,
past-tense, and singular. Each contains one or more noun phrases, a verb, and
one or more prepositional phrases. The general form of the grammar, without
feature structures, is as follows:

S → NP VP
NP → D N
VP → V
VP → V NP
VP → V NP NP
VP → V NP PP
VP → V PP PP
VP → V NP PP PP

Two sources of variation make it possible for each event to have several
equivalent surface forms:

1. Active and passive voice. Every event has both an active and a
passive voice surface form. For example, the event Action=talk,
Agent=waitress, and Goal=cat can be translated into either the
waitress talked to the cat or the cat was talked to by the waitress.

2. Variable prepositional phrase order. The order of prepositional
phrases is arbitrary. For instance, the event Action=hit,
Agent=waitress, Theme=thief, and Instrument=purse can be
translated into both the thief was hit by the waitress with the purse
and the thief was hit with the purse by the waitress.

Some events have as many as five equivalent surface forms.

6.2   Training Methods and Results

The unification-based grammar generated 192 sentences from a script
containing 86 events. Of the 192 sentences, 20 were selected randomly and set
aside in a test corpus that was not used for training. The remaining 172 sentences
constituted the training corpus. The model was then trained in stages, as
described in section 5.4.
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6.2.1   Sensory Network

The sensory network was trained for 150 epochs. Longer training runs were
tried, but they did not improve its performance. Each epoch consisted of a single
pass through the entire training corpus in a random order. Duplicate
presentations were allowed, so some sentences might be presented twice on one
epoch and others not at all. 

On each epoch, the network performance was evaluated in two ways. First,
the root-mean-squared (RMS) error was recorded for both the training and test
corpuses (see figure 6.2). This statistic measures the distance between the target
and output vectors for a pattern. The formula is

 RMS error = 1
n Σ

i
(targeti − outputi)2

where i ranges over all n of the output units. The RMS error for an entire epoch
is the average error for all of the patterns in the corpus.

RMS error is somewhat hard to interpret, so the sensory network was also
tested to see how many output errors it made on each corpus. An output error
was defined to be an output unit activation of either less than 0.7 for a unit that
should be on or greater than 0.3 for a unit that should be off. This corresponds to
a mistake in instantiating either a thematic role/filler unit or a surface
feature/value unit. Errors were measured after the last time-step in each
sentence, and the total number of errors was counted for each training epoch.
Then the total number of errors for each corpus was normalized by dividing by
the total number of instantiations in all of the sentences in the corpus. For
example, the sentence the waitress kissed the cat has four instantiations:
Agent=waitress, Action=kiss, Theme=cat, and Voice=active. So it would contribute
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Figure 6.2. The learning performance of the sensory network as measured by RMS error.



four instantiations to the total for its corpus. The normalized score is referred to
as the error ratio (see figure 6.3).

6.2.2   Forward Model

The forward model was trained until it produced an RMS error of less than
1.0 × 10-6, which is essentially perfect performance. This took 670 epochs, where
an epoch is a single presentation of a one-word babble.

6.2.3   Motor Network

The motor network was trained in the same way as the sensory network. Its
learning performance as measured by its RMS error is shown in figure 6.4.
Output errors were also recorded for each corpus using the same cutoffs as in
the sensory network. In the motor network, an output error corresponds to a
mistake in producing a word. For example, if the motor network produced the
sentence the thief talked to the cat when the target was the thief talked to the waitress,
that would be one output error. Output errors were counted after every
time-step in each sentence. Then the total number of errors for each corpus was
normalized by dividing by the total number of words in all of the sentences in
the corpus. The resulting error ratios are shown in figure 6.5.
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Chapter VII. Conclusion

7.1   Evaluation

In evaluating the model, it is important to keep in mind its goals. The
sensorimotor preadaptation hypothesis predicts that the prior existence of
advanced cognition preadapted general sensory and motor mechanisms for
language. The model's purpose is to support this hypothesis by showing how
general sensory and motor mechanisms might produce language. I have
suggested what these general sensory and motor mechanisms are, and explained
how they are simulated in the model. The remaining question is, Does the
model's performance justify the claim that it has produced language?

The two main parts of the model, the sensory and motor networks, both learn
to perform well. At the point where the sensory network reached its lowest RMS
error (epoch 93), it had an error ratio of 0.010 for the training corpus and 0.113
for the test corpus. This means that it instantiated 99.0% of the thematic
role/filler and surface feature/value pairs correctly for sentences in the training
corpus and 88.7% correctly for sentences in the test corpus. Likewise, at the point
where the motor network reached its lowest RMS error (epoch 80), it had an
error ratio of 0.012 for the training corpus and 0.076 for the test corpus. This
means that it instantiated 98.8% of the words correctly for sentences in the
training corpus and 92.4% correctly for sentences in the test corpus.

The model's performance on the training corpus is clearly very good. Both
the sensory and motor networks produced the correct instantiation about 99% of
the time. People probably misunderstand a word or speak incorrectly at least 1%
of the time, so this is an adequate level of performance. On the other hand,
performance on the test corpus was not as good. The sensory network produced
an incorrect instantiation about 11% of the time, and the motor network about
8%. Obviously, people do much better than this on novel sentences, so the model
does not fully account for language generalization.

However, it is not really a surprise that the model does not generalize as well
as people do. The generalization performance of connectionist models depends
heavily on the network architecture used. The sensory and motor networks use a
very simple architecture that is known to have limited generalization abilities
(Mozer 1993). The human neocortex is much more complex. Presumably, people
generalize so well because the architecture that emerges from all of this
complexity has very powerful generalization abilities. If so, then reproducing
human-level generalization is really beyond the scope of this model. The
purpose of the model is to show how general sensory and motor mechanisms
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might produce language, not to mimic the local circuity of the neocortex. The
model's generalization ability can probably be improved by adopting a more
powerful network architecture like de Vries and Principe's (1992) gamma model,
but such changes really don't really improve the model as a simulation of
sensory and motor processing in the neocortex. Instead, it seems more
reasonable to conclude that the model shows that it is possible that language is
produced by general sensory and motor mechanisms, but a full account of some
aspects of language, like generalization, will have to wait until know more about
the details of neocortical processing.

7.2   Future Directions

One area where the model could be improved is in its simulation of sensory
and motor mechanisms. Currently, the sensory and motor components of the
model each use a single recurrent network to simulate the suggested role of two
brain networks, a topographic map and an associative network. It would be nice
to eliminate this extra layer of abstraction by incorporating the hypothesized
brain networks directly into the model. The primary obstacle is that there are no
connectionist techniques for forming temporal or motor topographic maps.
Perhaps a reasonable goal for future research would be to devise a network
architecture capable of forming either sort of topographic map and incorporate it
into the model.

Another area for future research is linking the model's sensory and motor
networks to particular brain areas. Cognitive neuroscience techniques like PET
scans, functional MRI, EEGs, and lesion analyses have all been used to localize
various aspects of language processing in the brain. I have not incorporated this
evidence into the model because I did not wish to complicate it further.
However, in the long run, it is essential to link hypothesized neural systems to
particular brain areas. Such links make more detailed neural constraints
available to the modeler, and they provide a way to test the model, by lesioning
particular model components and comparing the results to equivalent lesions in
clinical subjects.
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