
IBL

An Inheritance�Based Lexicon

Formalism

Sven Hartrumpf

Arti�cial Intelligence Center

The University of Georgia

Athens� Georgia

June ����

Abstract

This paper describes a lexicon formalism �IBL for inheritance�based lex�

icon� that uses multiple default inheritance to state generalizations and

exceptions in a natural and e�cient way� The formalism is inspired by

the lexicon formalism in ELU �Environnement Linguistique d�Uni�ca�

tion�� However� IBL contains important extensions and modi�cations�

	� use of typed feature structures for intensive static error�checking and

e�cient implementation on the computer
 �� �ner distinction between

defeasible and non�defeasible information
 �� means for de�ning an in�

terface to applications which use a lexicon
 
� special form of a letter
tree to decrease the size of lexicons
 �� more readable syntax� The

paper de�nes the syntax and semantics of IBL lexicons� provides exam�

ples of lexicon fragments� discusses the extensions with respect to ELU�

compares IBL with other approaches that use inheritance� and gives an

overview of the implementation of IBL in Prolog�

Keywords� lexicon� lexicon speci�cation� inheritance� multiple default

inheritance� uni�cation� typed feature structures� Prolog�



CONTENTS �

Contents

� Overview �

� The ELU Lexicon Formalism �

� The IBL Lexicon Formalism �

��� Defeasible and Non�defeasible Information � � � � � � � � � � � � � � � � � � � �

��� Typed Feature Structures � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Global and Local Parts of Feature Structure Types � � � � � � � � � � � � � � ��

��� Fast Lexicon Lookup � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Basic Aspects of the Syntax of IBL Lexicons � � � � � � � � � � � � � � � � � � ��

� Formal De�nition of the IBL Syntax ��

� Examples of IBL Class De�nitions ��

� Usage of the IBL System ��

��� Processing IBL Lexicons � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Accessing IBL Lexicons � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Comparison with Similar Approaches ��

��� DATR � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

��� ELU � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

	 Perspectives �


References ��

� Overview

This paper describes an inheritance�based lexicon formalism 
IBL for short� that is derived
from the lexicon formalism used in the ELU 
Environnement Linguistique d�Uni
cation��
Russell� Ballim� Carroll� and Warwick�Armstrong 
�		�� present the ELU lexicon formalism
in detail� Another paper of interest is written by Russell� Carroll� and Warwick�Armstrong

�		����

�I want to thank Michael Covington for helpful comments and suggestions�



� THE ELU LEXICON FORMALISM �

I modi
ed and extended the formalism� This is a short summary of the most important
changes�

�� IBL uses typed feature structures instead of untyped feature structures�

�� The distinction between defeasible and non�defeasible information is extended�

�� Information that is needed during lexicon processing� but isn�t useful for the user of
the lexicon� is clearly separated from the useful part of the information� This is ac�
complished by introducing the idea of a global and a local part of a feature structure
type�

�� IBL uses a letter tree for quick access to the lexicon� while the ELU system uses an
indexing scheme�

�� The syntax of the lexicon speci
cation language is modi
ed to make lexicons more
readable to humans�

These changes will be discussed in detail in section ��

Section � describes the original ELU lexicon formalism� Section � gives a formal de
nition
of the syntax of the IBL lexicon speci
cation language� The examples of class de
nitions in
section � illustrate the contents of the preceding sections� Section � is intended as a user�s
guide� It shows how to use the di�erent programs in the IBL system� In section �� IBL is
compared with other lexicon formalisms that use some kind of inheritance scheme� The 
nal
section � discusses some directions for further development of the IBL system�

� The ELU Lexicon Formalism

The ELU lexicon formalism combines two di�erent paradigms� uni
cation and inheritance�
The type of inheritance used� multiple default inheritance� is able to express adequately
general statements and exceptions to such statements� Pure uni
cation cannot accomplish
this� Touretzky 
�	��� gives a thorough study of the problems associated with this kind of
inheritance and a formalization of inheritance systems�

The most important area for using the combination of uni
cation and inheritance is the
lexicon� The ELU lexicon formalism is a part of the ELU system� which ISSCO� Geneva

Switzerland�� is developing�

The lexicon is a hierarchy of classes in the form of a directed acyclic graph� The most
speci
c classes represent single lexemes like the verb love� more general classes represent a
set of words like the set of all transitive verbs or the set of all verbs� These classes could be
written in ELU as�

�Word love �Transitive Verb�
hstemi � love



� THE ELU LEXICON FORMALISM �

�Class Transitive ��
hsubcati � �Subj�Obj�
hSubj cati � np
hObj cati � np

�Class Verb ��
hcati � v
hauxi � no

Lexical classes begin with �Word� non�lexical classes with �Class� After the class name 
love�
Transitive� Verb� follows the superclass declaration� this is the list of all superclasses of the
class� Variables in equations are capitalized� constants are not� Paths are notated in angle
brackets�

Ambiguities that can be caused by multiple inheritance� when di�erent superclasses supply
contradicting values� are eliminated by introducing the notion of a total ordering on all su�
perclasses of a class� The most speci
c class provides the information in case of an ambiguity�
More speci
c classes appear to the left of more general classes in the superclass declaration
of a class� For instance� Transitive is more speci
c to love than Verb is� If all indirect super�
classes are included in this ordering� one receives the class precedence list 
CPL� of a class�
The CPL is derived by traversing the class hierarchy in a left�right� depth�
rst manner� The
left most class in the CPL of a class C is the class C itself� as it is the most speci
c of all
classes in its CPL�

A default value is a value for a feature that is valid� unless a di�erent value is supplied in
the de
nition of a class that is preceding the class containing the default value in the current
CPL� This means that default values are defeasible� They are written immediately after the
superclass declaration of a class in its main equation set�

There are values that cannot be overwritten� these are given in the variant equation sets
of a class de
nition� These sets follow after the main equation set� The following example is
the above mentioned non�lexical class Verb plus three variant equation sets�

�Class Verb ��
hcati � v
hauxi � no
j

htensei � past
hformi � hstemi �� ed
j

hagri � sg�
htensei � present
hformi � hstemi �� s
j

hagri � non sg�
htensei � present
hformi � hstemi



� THE ELU LEXICON FORMALISM �

Every variant equation set starts with a vertical bar� S � Pre	x �� Su
x uni
es S with
the result of concatenating Pre	x and Su
x� Variants are mutually exclusive alternatives in
a class that are on the same level in the hierarchy� For example� the third singular present
tense form and the past tense form are both word forms of a verb�

Disjunction of atomic feature structures and negation of atomic feature structures or their
disjunctions are allowed as feature values� The disjunction of the atomic values a and b is
written as a � b� the negation of the atomic value a is written as �a�

The value of an attribute can be a list of feature structures� Lists are written as in
Prolog� For example� in the main equation set of Transitive� the attribute subcat has the
value �Subj�Obj�� the list of two feature structures Subj and Obj�

To de
ne the value of an attribute or to state constraints for several values� one can use a
macro� For instance�

�umlaut�hmorph bse stemi�hmorph stemi�

calls the macro umlaut� which might be used to derive the stem hmorph stemi from hmorph
bse stemi by changing the stem vowel to an umlaut�

Multiple inheritance is useful because the properties of a word can consist of two or more
unrelated sets� such as morphological features and syntactic features� So one can distinguish
classes for verbs that are morphologically similar� and classes for verbs that are syntacti�
cally similar� Then� a verb lexeme will have at least two superclasses� one concerning its
morphology� and one concerning its syntax�

Multiple default inheritance helps to express linguistic data in a more compact and readable
way� as one can make generalizations� if linguistically possible� and de
ne exceptions� if
linguistically necessary�

Uni
cation can be de
ned for the information given in classes connected by a multiple
default inheritance hierarchy� and this uni
cation is tractable by computers� the result of
unifying all pieces of information that belong to one lexical class L is the global extension
of L� This uni
cation starts by unifying the empty feature structure � with the left most
class in the CPL of L� If information in the main equation set contradicts the current feature
structure� it will be ignored� if information in a variant equation set does so� uni
cation with
this speci
c variant will fail� The variant equation sets can introduce more than one feature
structure as a result of uni
cation� All of them must be traced when proceeding to the next
class in the CPL� The result after processing all classes in the CPL is a non�empty set of
feature structures or failure of the uni
cation� For instance� the global extension of the above
de
ned lexical class love consists of three feature structures� The one derived by using the
second variant in the class Verb contains information from the lexical class love�

hstemi � love

from the non�lexical class Transitive�



� THE IBL LEXICON FORMALISM �

hsubcati � �Subj�Obj�
hSubj cati � np
hObj cati � np

from the main equation set of the non�lexical class Verb�

hcati � v
hauxi � no

and from the second variant of the non�lexical class Verb�

hagri � sg�
htensei � present
hformi � loves

The set of word forms that are admitted by the lexicon is the union of the global extensions
of all lexical classes�

To lookup information in the lexicon� it is not necessary to perform an exhaustive search
and generate all global extensions at run�time� instead ELU uses indexing for faster access�
There is one index 
le for analysis that contains for every word form in the lexicon a pointer
to its lexical class� and one index 
le for generation that contains for every name of a semantic
relation in the lexicon a pointer to the corresponding lexical class� Therefore one can perform
a binary search in the index to 
nd the right lexical class� only the global extension of this
class must be calculated during run�time�

� The IBL Lexicon Formalism

In this section the extensions and modi
cations that lead from the ELU lexicon formalism
to the IBL system are described and discussed�

The semantics of the language used to specify IBL lexicons is the same as for the ELU
system� which is described in section �� except for the extensions and modi
cations that the
IBL system provides�

The only changes that in�uence the semantics of the IBL lexicon speci
cation language
greatly are the extension of the distinction between defeasible and non�defeasible information
and the introduction of typed feature structures�

��� Defeasible and Non�defeasible Information

In an ELU lexicon� information that is given in a main equation set is defeasible� while the
information in variant equation sets is not� Writing small lexicons� it becomes obvious that
these two distinctions are not very convenient� Sometimes one wants to state a constraint
that is not defeasible and not limited to a variant� Therefore IBL splits the main equation



� THE IBL LEXICON FORMALISM �

variant non�variant

defeasible � default equation set
non�defeasible variant equation set main equation set

Table �� The three di�erent types of information in IBL

set of the ELU system into a default equation set and a main equation set� The default
equation set corresponds to the main equation set in ELU� while the main equation set in
IBL is something not found in ELU� non�defeasible information not limited to a variant� One
can transform an IBL lexicon into an ELU lexicon regarding this extension� If E is the main
equation set of a class C in IBL� one moves the equation set E to all variant sets in C� If
there is no variant set� one must write a new one containing just the equations in E�

While this 
ner distinction doesn�t extend the complexity of the formalism� it is a valuable
tool for two reasons� First� a theoretical reason� it removes the urge upon the lexicon writer to
make information defeasible that should not be defeasible or duplicate the information to all
variant equation sets in the class de
nition� Second� a more practical reason� the extended
distinction of the type of information encourages to make information non�defeasible and
hence the system can detect more cases where a feature value is changed in a way the lexicon
writer didn�t intend�

The type of information that can be stated in a class de
nition can be distinguished with
regard to the two dichotomies defeasible vs� non�defeasible and variant vs� main�non�variant
information as Table � shows�

That there is no way to state defeasible� variant information makes sense� because the
information given in a variant equation set de
nes a variant by describing its constituting
properties� One would undermine these important distinguishing constraints� if one overrode
them later� Therefore information in variants is never defeasible�

The de
nition of the global extension of the ELU system that Russell� Ballim� Carroll� and
Warwick�Armstrong 
�		�� pp� �������� give must be revised� because information stated
outside the variant equation sets can be defeasible or non�defeasible in IBL� Let � be a feature
structure that is processed during calculating the superclass extension of a lexical class with
respect to the class C� If an equation in the main equation set of C cannot be uni
ed with
the feature structure �� uni
cation fails� if the same equation occurs in the default equation
set of C� this equation is just ignored and uni
cation can still succeed� The global extension
of a lexical class is de
ned formally in the following section ����

��� Typed Feature Structures

I introduce typed feature structures� because they have many advantages compared to

untyped� feature structures�



� THE IBL LEXICON FORMALISM �

� Types enable the computer to perform a large amount of static error checking� For
example� misspelled attributes or values and many kinds of false constraints can be
detected� These errors� which are hard to 
nd for humans� cannot be detected by the
computer� when untyped feature structures are used� because almost every string of
characters can be a valid attribute or value�

� Typed feature structures can be represented in programs more e�ciently and more
compactly than untyped feature structures� For example� one can use positional en�
codings that both reduce the amount of memory needed and the access time to speci
c
feature values�

� Using meaningful types makes a lexicon more structured and hence more readable�

� In most case� the person who writes a lexicon doesn�t think about all feature structures
in the same way� but distinguishes di�erent types� Therefore it is natural to support
this way of thinking by the lexicon formalism�

� An application that uses feature structures calculated by another program� e�g� a parser
using an IBL lexicon� will know which features will be speci
ed and which won�t� if the
feature structures are typed� Types for feature structures provide a simple interface
de
nition between di�erent programs� If one adds comments to describe the semantics
of the features mentioned in a feature structure type� this might su�ce for a complete
interface de
nition�

For more information about typed feature structures� see Carpenter 
�		��� who points out
the 
rst four of these advantages�

IBL uses two di�erent kinds of types� enumeration types and complex types�

An enumeration type is de
ned by a 
nite set of values that must be valid Prolog terms�
For example�

type num type � f sg� pl g


de
nes the type num type to allow exactly the two values sg and pl� and provides a type that
might be used as the type of the number feature in natural languages that distinguish only
singular and plural forms�

A complex type is a set of pairs each consisting of an attribute name and a type name� For
example�

type v agr type � �
pers � pers type�
num � num type�


de
nes the type v agr type which contains a feature called pers of type pers type and a feature
called num of type num type� Complex types are normal types and can hence appear inside
the de
nition of another complex type� So� one can construct arbitrarily complex types�



� THE IBL LEXICON FORMALISM �

IBL has three prede�ned types� boolean type� string type� and general type� The 
rst type
is an enumeration type with only two possible values� � and �� which one should use with
the normal meaning of the two truth values in binary logic� Possible values for a feature
of the type string type are all Prolog strings� i�e� zero or more characters enclosed in double
quotes� Sometimes information must be encoded in the lexicon that is not further processed
in IBL� but is just passed to the user of the lexicon� This information can be a list or a set of
typed feature structures and the like� IBL provides the type general type to handle this kind
of information� Every Prolog term is a valid value for a feature of this type�

Every class in IBL must indicate with which type of feature structures it should be associ�
ated� Therefore a class must either de
ne its type or must have a CPL that contains exactly
one class that de
nes its own type� A class that de
nes the type of a feature structure is
called a top class� since this class must not have any superclasses and is hence at the top of
the class hierarchy� An example of a top class is given in section �� Note that the type of
feature structures is split into a global and an optional local part� as discussed in section ����

Feature structure types can be arbitrary except for the following constraints� All types
must be de
ned� before they can be used� Feature names at one level of a type must be
unique� The set of feature names in a top class de
nition and the set which contains all
possible values of all enumeration types must be disjoint in order to avoid ambiguity� The
feature conv must not appear in the type of any top class since it is reserved by IBL� There
must be a feature form of the prede
ned type string type in the global part of every feature
structure type� This constraint is necessary� because the computer will create an index
structure on the value of the feature form which is intended to contain the word form that
the feature structure describes�

The introduction of types might seem to be too restrictive� Two tasks that will be necessary
in a sophisticated lexicon can no longer be performed� First� to describe morphological
derivation from one category to another� it is necessary to change the type of the feature
structure used in calculating the global extension of a lexical class� In an untyped approach�
this is easily accomplished by overriding the 
default� information for a feature cat that
contains the category of the word form described by the feature structure� Second� a set of
information stated in a non�lexical class is sometimes so far generalized that it can be used
for words of di�erent categories� For example� if one de
nes classes for speci
c combinations
of semantic casus 
or theta�roles�� e�g� agens and theme� it might be possible to generalize so
that the classes are applicable to verbs and nouns� e�g� create and creation can be described as
being combined with the same semantic casus� by adding the same class to their superclass
list�

To allow these two tasks to be performed in a typed system like IBL� two type�safe methods
can be applied� converters� i�e� a procedure that converts from one type to another copying
only the relevant information� and metaclasses� i�e� classes over classes� in IBL a class whose
superclass list contains only one element� a parameter or type variable� i�e� a variable whose
domain is a set of types�

A converter speci
es how to transform a feature structure �� of type T� into a feature
structure �� of another type T�� For instance�



� THE IBL LEXICON FORMALISM 	

converter part� converter
from
v

to
a

conditions
a�stem pos � v�form




states that a feature structure �� of type a can be created by taking a feature structure ��
of type v and ful
lling the condition that the feature stem pos in �� and the feature form in
�� are to be uni
ed�

To use a converter� a class de
nition must contain a value for the feature conv� which is
implicitly a feature of type general type in every feature structure type� For instance�

variant
conv � part� converter�a part���
form � morph�pre	x � morph�stem � �end��
vform � pp

is a variant equation set that gives the converter part� converter as the value of the special
feature conv� After the name of the converter� the superclass list for the feature structure that
the converter will create is given in parentheses� One can think of a converter as creating a
new lexical class from the information in another class and specifying the direct superclasses
of this new lexical class� This new class will be processed after the normal global extension
has been generated�

Converters are much more than just a way to change the category of a feature structure in
a typed approach� they are also capable of removing unnecessary and irritating information
in generating the global extension of a lexicon� because the conditions in a converter specify
which information is copied to or used in another way in the new feature structure� The
rest of the old feature structure is discarded� An untyped approach ends up with a large
set of unnecessary knowledge after a morphological derivation� In an example lexicon for
German� the feature structure from which the adjectivized version of the present participle
is calculated contains �� feature values� All these features will be present in all feature
structures for the derived adjective� But only one of them� the feature form� is ever needed�
An untyped approach might develop a method to remove unnecessary features that are caused
by morphological derivations� etc� However in a typed approach� the handling of this problem
is naturally solved with the change of the type of feature structures� This is one of the many
reasons suggesting that types are a powerful device in natural language processing�

The introduction of converters leads to a new de
nition of the global extension of a lexical
class L� After calculating the global extension of L as de
ned in ELU� but including the
distinction between the default and the main equation set� each feature structure � in the
global extension whose value of the feature conv is not the most general feature structure �
is removed from the global extension� The converter speci
ed in the feature conv is applied



� THE IBL LEXICON FORMALISM ��

to � giving a feature structure that one can think of as the result of applying a new lexical
class to �� and the global extension is calculated starting with this new feature structure
and using the superclasses given in the value of the feature conv to add information� The
result is added to the general extension� This process is iterated as long as there are feature
structures with an instantiated value for the feature conv�

To de
ne the global extension formally� some other de
nitions are needed 
rst� Let R
��
be the restriction of the feature structure � to reentrant paths� i�e� only the reentrant paths
in � are present in R
��� The result of default uni�cation 
td� of a feature structure � and
a set of feature structures � is a feature structure de
ned as follows�

� td � �

�
� t

F
f� � � j� t � �� �g if R
�� t

F
� �� � and � t R


F
�� �� �

� otherwise

The condition about reentrant paths in the feature structures ensures that uni
cation will
fail if the default uni
cation is order�sensitive� Note that the arguments of default uni
cation
have di�erent types�

Let C be a class with a main equation set that corresponds to the feature structure M �
with default equations that correspond to the feature structure set D� and with m variant
equation sets that correspond to the feature structures V�� � � � � Vm� respectively� The super�
class extension of a set of feature structures � with respect to the class C or a class list
hC�� C�� � � � � Cni is de
ned as follows�

se
�� C� ��

�����
����
f� j� � � � � � � tM td D t Vi � � �� � � � � i � mg
if m 	 �

f� j� � � � � � � tM td D � � �� �g
otherwise

se
�� hi� �� �

se
�� hC�� C�� � � � � Cni� �� se
se
�� C��� hC�� � � � � Cni�

Using the above de
nitions� the global extension of a lexical class L with a CPL C� ge
C��
can be de
ned as follows�

ge�
C� �� se
f�g� C�

gei��
C� �� gei
C�� Conv
gei
C��
�

C��New�gei�C��

ge
C��

with Conv
X� �� f� j� � X � ��conv �� �g

and New
X� �� fC� j� � X � ��conv � c
S� � C� is the CPL
of a lexical class with a superclass list S and
a main equation set that corresponds to the
feature structure which results from applying
the converter c to �g

ge
C� �� ge�i�Conv�gei�C�����
C�

Note that the global extension is unde
ned if there is no i with Conv
gei
C�� � 
� The
lexicon writer must ensure that the lexicon doesn�t specify any cyclic type conversions� e�g�



� THE IBL LEXICON FORMALISM ��

that one can derive a verb from a noun� and derive a noun from this verb� and derive a verb
from this noun� and so on ad in
nitum�

The second extension of the type system are metaclasses� A metaclass is used to express
information that is applicable to more than one type of feature structures� For example�

metaclass c
main
a � b




is the de
nition of a metaclass� The metaclass c will be instantiated to a class when it
appears in the CPL of a class L� The type of the instantiation of c used for L is the type of
L� For the semantics of an IBL lexicon� metaclasses can be regarded as syntactic sugar� For
example� the metaclass c stands for the following set of classes�

class c T inherit T
main
a � b




where T is the name of a top class and c T is a legal IBL class� i�e� all paths must exist in
T� etc� A reference to the class c in a superclass S is an abbreviation for c T where T is the
type that is associated with the class S�

Metaclasses are not included in IBL since example lexicons showed that metaclasses are
rarely needed�

After introducing types one might ask what the properties of IBL�s type system are� The
type system is sound� i�e� there is no need for dynamic type checking� A program can translate
an IBL lexicon into a version that doesn�t need to check for type errors� Only the translated
lexicon is accessed by applications that use IBL lexicons� All type checking that is necessary is
performed� in IBL only by the translator� Therefore the implementation of the IBL language
is strongly typed� This means that the use of a successfully translated lexicon can�t cause
type errors�

��� Global and Local Parts of Feature Structure Types

A typical lexicon speci
cation contains among other things a special kind of information�
information that the computer needs� but the user doesn�t need� An example of such infor�
mation are stems that are used for calculating di�erent morphological forms of one lexeme�
the computer needs the stem in order to be able to apply the equations in some morphological
class� while the application using the lexicon is only interested in the result of this process
and not in any intermediate results�

To distinguish these two kinds of information� a class type is split into a global and a local
part� Only the features in the global part are visible to an application that uses a lexicon�



� THE IBL LEXICON FORMALISM ��

��� Fast Lexicon Lookup

The data structure of letter trees is used for lexicon lookup� Letter trees for lexicons are
described by Covington 
�		�� pp� ���������

While the ELU system uses an indexing scheme� IBL uses letter trees� because they need
less memory than binary trees and have similar access times� They save memory because
typically an entry for a word form just contains a one or two letter su�x of the word form�
while the rest of the word form is shared by many di�erent words�

The letter tree I use is more compact than an ordinary letter tree� If there exists a sequence
of arcs annotated with single letters and there are no alternative arcs leading away� the arcs
are collapsed into a single arc annotated with a word� For example� the letter tree

ltree��a��b��c��d� �e� entry for abcde����� �c� entry for ac���

is replaced by the more e�cient structure

ltree��a� �bcde� entry for abcde�� �c� entry for ac���

An entry in a letter tree for an IBL lexicon contains only a numerical class identi
er or a list
of numerical class identi
ers of all lexical classes whose global extensions contain a feature
structure that belongs to the entry� As the class identi
er often stays the same at the end of
a path in the letter tree� the class identi
er is omitted if it is the same as the last one found
on a pre
x� This is an example of this compact form�

� � � �g� �e� � � � �funden� ������ �e� �m�� �n�� �r�� �s� � � � � � � � � � �� � � �

The savings in space can be quite big� especially for highly in�ectional languages that
mainly use su�xes in their in�ectional paradigms� e�g� French� German� Italian� Russian�
Spanish� etc� The above given part of a compact letter tree corresponds to the following
index structure�

� � � �gefunden� ������� �gefundene� ������� �gefundenem� ������� �gefundenen� �������
�gefundener� ������� �gefundenes� ������� � � �

For a small German lexicon with �� lexical classes specifying ��� di�erent word forms� a
letter tree needs only ��� of the memory needed by a normal index structure� like the one
given above�

As described in section �� the class identi
er found in a letter tree is used to calculate only
the part of the global extension of the lexicon that is needed for a given word� For example
lexicons� a typical lookup time is ��� s � � s on a SUN SPARC ��� Around ���� s are needed
for searching in a letter tree with ��� entries� for lexical classes with a long CPL� generating
the global extension needs the major part of the total lookup time�

It can take much less time to generate the global extension of a lexical class when the
relevant word form is known because this information gives a constraint for the feature form�
If further constraints are known in the application program using an IBL lexicon� these can



� FORMAL DEFINITION OF THE IBL SYNTAX ��

be passed to the lexicon lookup in order to decrease the lookup time even more�

��	 Basic Aspects of the Syntax of IBL Lexicons

The syntax for ELU lexicons is compact� but not very readable to human readers� The IBL
system has hence a more verbose syntax� Each part in a lexicon speci
cation is introduced by
a keyword� For instance� variant introduces a variant equation set� while the ELU system uses
a vertical bar 
j� instead� Some extensions of the syntax re�ect extensions of the formalism�
e�g� the introduction of types� In addition� the syntax of IBL lexicons di�ers from that of
ELU lexicons in the following aspects�

A path consists of an attribute name or of several attribute names separated by carets�
e�g� agr�pers refers to the value of the feature pers in the feature agr�

A disjunction of atomic feature structures a and b is written a n� b in IBL� and a � b in an
ELU lexicon�

A string of characters� which is used to describe a word form or a part of it� must be
enclosed in double quotes� The string concatenation operator is the ampersand 
���

IBL provides the possibility to give a predicate in an equation set� This is used for functional
dependencies� feature values that can be computed from other feature values� and the like�
Predicates must be valid Prolog predicates� ELU uses a similar concept which is called a
macro�

IBL allows to include other 
les� If IBL 
nds the directive

include �types
ibl�


in a lexicon speci
cation� it will behave as if the contents of the 
le types
ibl were at this
position in the lexicon� If the 
le has already been loaded� the directive will be ignored�

Comments are written as in Prolog� a percent sign 
�� introduces a comment that ends
at the end of the current line� a slash immediately followed by a star 
��� starts a comment
which ends at the next star that is immediately followed by a slash 
����

The syntax of an IBL lexicon is formally de
ned in the following section ��

� Formal De�nition of the IBL Syntax

The syntax of the language used for specifying an IBL lexicon is de
ned in extended BNF
notation 
in the form de
ned by BS ����� as shown in Table � and Table �� Note that a
lexicon may contain plain Prolog terms in order to de
ne predicates that are mentioned as
conditions in an equation set 
see section ����� Examples of class de
nitions are given in
section ��



� FORMAL DEFINITION OF THE IBL SYNTAX ��

lexicon � f lexicon term j term j comment g �
lexicon term � 
 directive j class de
nition j type de
nition j

converter de
nition � � �
� �
directive � include directive �
include directive � �include� � atom �
type de
nition � �type� � type name � ��� � type �
type name � atom �
type � prede
ned type j enumeration type j complex type �
prede
ned type � �boolean type� j �string type� j �general type� �
enumeration type � �f� � atomic feature structure �

f ��� � atomic feature structure g � �g� �
complex type � ��� � type name � f ��� � type name g � ��� �
atomic feature structure � term �
class de
nition � top class j non�lexical class j lexical class �
top class � �top� � class name � global type part �

� local type part � � equation part �
class name � atom j string �
global type part � �global� � feature structure type �
local type part � �local� � feature structure type �
feature structure type � attribute name � ��� � type name �

f ��� � attribute name � ��� � type name g �
non�lexical class � �class� � class name � �inherit� � superclass list �

equation part �
lexical class � �word� � class name � �inherit� � superclass list �

equation part �
superclass list � class name � f ��� � class name g �
equation part � � main equation set � � � default equation set � �

f variant equation set g �
main equation set � �main� � equation set �
default equation set � �default� � equation set �
variant equation set � �variant� � equation set �
equation set � 
 equation j predicate condition � �

f ��� � 
 equation j predicate condition � g �
equation � path � ��� � right hand side �
predicate condition � atom � � ��� � term � f ��� � term g � ��� � �
right hand side � path j attribute value �
path � attribute name � f ��� � attribute name g �
attribute name � atom �
attribute value � � ��� � � atomic feature structure j

atomic feature structure �
f �n�� � atomic feature structure g j
��� � ��� � atomic feature structure �
f �n�� � atomic feature structure g � ��� �

Table �� Syntax of an IBL lexicon 
part ��



� EXAMPLES OF IBL CLASS DEFINITIONS ��

converter de
nition � �converter� � atom � �from� � type name � �to� � type name �
�conditions� � equation set �

atom � 
� as de
ned in ISO Prolog �� �
comment � 
� as de
ned in ISO Prolog �� �
string � 
� as de
ned in ISO Prolog �� �
term � 
� as de
ned in ISO Prolog �� �

Table �� Syntax of an IBL lexicon 
part ��

� Examples of IBL Class De�nitions

This section contains some examples which illustrate the syntax and semantics of an IBL
lexicon� especially the three di�erent kinds of classes� top classes� non�lexical classes� and
lexical classes� The examples are intended to demonstrate certain aspects of the lexicon
speci
cation language� I don�t claim that they are linguistically adequate�

The following is an example of a top class that could be used in the description of German
nouns�

top n
global
sem � sem type�
case � case type�
num � num type�
gend � gend type�
pers � pers type�
form � string type

local
stem � string type�
stem pl � string type�
su
x � string type

main
pers � �

default
stem pl � stem

variant
num � sg�
form � stem � su
x

variant
num � pl�
form � stem pl � su
x




After the keywords global and local� the global part and the local part� respectively� of the
feature structure type for nouns are de
ned� The main equation set states that a noun always
refers to an object in the third person� The default equation set expresses the observation



� USAGE OF THE IBL SYSTEM ��

that normally the stem for plural forms is the same as for singular forms� The variant
equation sets state when and how to use the di�erent stems� a singular word form is derived
by concatenating the stem and the morphological su�x� a plural word form uses the plural
stem instead of the normal stem�

The class n singularetantum is a non�lexical class�

class n singularetantum inherit n
main
num � sg




It inherits all the information from the class n and contains only one constraint� all word
forms of a singularetantum are singular�

The class �Milch� is an example of a lexical class�

word �Milch� inherit n singularetantum� n � en
main
stem � �Milch��
gend � fem




This class inherits directly from two classes� 
rst from the class n singularetantum� then from
a class called n � en� which might contain morphological information about a speci
c noun
paradigm� The lexical class inherits indirectly from the class n� since n is a direct superclass
of n singularetantum� and from all direct and indirect superclasses of the class n � en� The
only information that is idiosyncratic for the noun Milch� at least in this approach� is that
its stem is Milch and its gender is feminine�

The following lexical class demonstrates that default information can be overridden�

word �Museum� inherit n s �
main
stem � �Museum��
stem pl � �Museen��
gend � neut




The plural stem is set to the string Museen and hence overrides the information that the
plural stem defaults to the normal stem� This default information comes from the top class
n that will be in the superclass list of the morphological class n s ��

� Usage of the IBL System

The software implementing the IBL formalism comprises several programs written in Pro�
log� The programs comply with the ISO Prolog draft which is edited by Scowen 
�		���



� USAGE OF THE IBL SYSTEM ��

Each lexicon is related to a set of 
les which have the same name pre
x� but distinct
su�xes� The only 
le the lexicon designer should modify directly is the 
ibl�
le that must
contain a lexicon in the language of the IBL system�


�� Processing IBL Lexicons

A 
ibl�
le containing an IBL lexicon must be translated by the Prolog program iblp into a

pl�
le� which is a Prolog program� All necessary type checking is done by the translator�
Therefore the resulting 
le doesn�t need to do any type checking� This is possible because the
type system of IBL is sound� In addition� all class names are replaced by numerical identi
ers�
CPLs are calculated� etc� The 
pl�
le is more than an intermediate 
le� it is needed� when
applications access the lexicon via a letter tree�

A translated lexicon must be further processed by the Prolog program ibl� This program
generates a 
ext�
le that contains the global parts of all feature structures in the global
extensions of all lexical classes in the corresponding 
pl�
le� The program ibl also generates
index 
les for the lexicon� a 
for�
le containing pairs of the form 
word form� identi
er of the
lexical class�� and a 
sem�
le containing pairs of the form 
semantics of a word� identi
er of
the lexical class�� The generation of 
sem�
les is not implemented in the current version of
the system� because it depends upon how the semantics of a word is described� The task of
generating 
sem�
les is similar to producing 
for�
les�

The program genltree generates a letter tree from a 
for�
le and stores the tree as one
Prolog term in a 
	x�
le� A 
for�
le also contains two commands to include the corresponding
translated lexicon and the 
le ibl	x
pl� which provides the access method described in sec�
tion ���� If a 
sem�
le is produced� one can transform it into a 
six�
le containing a letter tree
for access during language generation� The program genltree is written in C�� for reasons of
e�ciency�

The complete hierarchy of 
les for a lexicon named german
ibl is illustrated in Figure ��

All of the 
les that are directly or indirectly derived from a 
ibl�
le can be generated
automatically by using the 
le make	le for the UNIX command make� The 
le that one
wants to be generated must be given as an argument to the make command� To generate a
current version of the 
le german
	x� one can type the command

make german
	x


�� Accessing IBL Lexicons

An IBL lexicon is not very useful� unless it is used by an application program for language
analysis or generation or both� There are two ways to access an IBL lexicon�

One can directly refer to the 
ext�
le that contains the complete extension of the lexicon� i�e�
all typed feature structures that are admitted by the lexicon� This way is not recommended�
because it will become impossible to pursue this method with a lexicon containing a large
number of lexical classes� especially of a highly in�ectional language� A short calculation can



� USAGE OF THE IBL SYSTEM ��

german
ibl

�

translating 
program iblp�

german
pl
�
�

�
�
�
��

german
ext
�

german
for

H
H
H
H
H
Hj

processing 
program ibl�

german
sem

�

german
	x
�

german
six

generating letter trees 
program genltree�

Legend� F�

�
P

F�

The program P generates the 
le F� from the 
le F��

Figure �� Files belonging to a lexicon named german
ibl

illustrate this point� If a lexicon contains ������ lexical classes and the global extension of
a lexical class has �� feature structures on the average with an average size of ��� bytes� the
global extension of the lexicon written as Prolog terms requires at least ��� Mbyte of main
memory� Today� this memory requirement exceeds the capacity of most computer systems�
However� this direct access to the extension of the lexicon might be useful for small lexicons
and during certain phases of developing systems for natural language processing�

The highly recommended way of accessing the lexicon uses one level of indirection� This
level is provided by a letter tree� For example� if one wants to use the lexicon that is speci
ed
in the 
le french
ibl for looking up words in a Prolog program that analyzes French sentences�
the program must include the 
le french
	x with the Prolog directive�

�� ensure loaded��french
	x��


To obtain all typed feature structures that have the written form aimera� one can use the
predicate iBl 	x lookup�� to write the following Prolog goal�

iBl 	x lookup� �aimera�� Feature structures�

If the word given as the 
rst argument is not admitted by the lexicon� the predicate is false�
otherwise the predicate is true and the variable Feature structures is instantiated to the list
of all typed feature structures that are speci
ed by the lexicon french
ibl and satisfy the
condition

form � �aimera�



� COMPARISON WITH SIMILAR APPROACHES �	

If one includes a 
	x�
le� the corresponding 
pl�
le� the 
le ibl	x
pl� and the 
le ibl
pl are
used and must hence be available�

� Comparison with Similar Approaches

��� DATR

DATR is a lexicon formalism that uses a kind of multiple default inheritance that di�ers
from the one used in IBL� A path can specify another node which corresponds to a class
in IBL instead of a value and inherits the value from this node� Evans and Gazdar 
�	�	�
describe DATR and its kind of inheritance�

The most important advantages of IBL over DATR are the following�

�� In IBL� but not in DATR� there is a way to protect data from being overridden� the
de
nition of non�defeasible information in main and variant equation sets� This dis�
tinction between defeasible and non�defeasible information is a powerful error detection
device�

�� IBL is typed� As shown in the preceding sections� typedness is an important aid to spec�
ify consistent and error free lexicons� DATR doesn�t use typed feature structures� In
addition� the typedness of feature structures increases the e�ciency of implementations
of a lexicon formalism� 
See also section �����

There is one point that might seem to be an advantage of DATR� in DATR every path
can specify a source of information� This provides a higher degree of �exibility than the
concept of a superclass list in IBL� However� the question is whether this �exibility is too
high and can lead to badly structured inheritance networks� During the development of IBL�
only two in�exibilities� which were due to the introduction of types� became obvious and led
to the introduction of converters and metaclasses� The inheritance method in IBL seems to
be �exible enough and encourages through its limitations compared to path inheritance a
better and clearer structure of lexicon speci
cations�

Russell� Ballim� Carroll� and Warwick�Armstrong 
�		�� pp� ������	� compare the de
ni�
tion of inheritance in ELU with the one in DATR and in comparable formalisms�

��� ELU

As IBL is based on ELU� only the modi
cations and extensions must be considered in a
comparison between these two formalisms� which use the same concept of multiple default
inheritance� The extensions are discussed at their introduction� mainly in section �� The
main advantage of IBL over ELU seems to be the typedness of feature structures with all its
consequences for design and error detection�



� PERSPECTIVES ��

� Perspectives

Although the IBL lexicon formalism is a working system� there are still a lot of things to
discuss and to do�

First� a feature of the ELU lexicon formalism that is missing in IBL and is worth including�

� The 
sem� and 
six�
les are not generated by the current system� As mentioned in
section ���� this task is similar to the one of producing 
for� and 
	x�
les from a translated
lexicon 
le�

Second� features that are not present in the ELU lexicon formalism and are candidates for
a further development of the IBL formalism�

� Disjunction of non�atomic feature structures could be allowed� IBL restricts disjunction
to atomic feature structures� Therefore one must sometimes use more variant equation
sets than linguistically necessary� For instance� one cannot write a variant equation set
for the German verb su�x �t like this�

variant
morph�su
x � �t��
agr � �pers � �� num � sg� n� �pers � �� num � pl�
temp � pres�
mod � ind�
vform � 	n

If one wants to use these features� one must give two variant equation sets with almost
identical equations�

variant
morph�su
x � �t��
agr�pers � ��
agr�num � sg�
temp � pres�
mod � ind�
vform � 	n

variant
morph�su
x � �t��
agr�pers � ��
agr�num � pl�
temp � pres�
mod � ind�
vform � 	n

The global extension of every lexical class that describes a German verb has hence 
at
least� one element more than necessary with general disjunction�



REFERENCES ��

� Negation could be de
ned for arbitrary feature structures� IBL limits negation to atomic
feature structures and disjunctions of them� In some cases� it would be convenient to
have negation de
ned for general feature structures�

� The type system could be further elaborated� Possible extensions are lists and sets
of types as new feature structure types� However� it is unlikely that these types are
needed for processing in the lexicon� To provide sets or lists of feature structures to
users of the lexicon� it might su�ce to use the prede
ned type general type because the
lexicon formalism need not look inside the values and can view them as atomic�

� The way of con�ict resolution by CPLs may be too strict� An alternative would be to
specify for each feature the relevant superclass or a function that computes the value in
case of an ambiguity� But this would increase the complexity of the inheritance system�
Therefore one might prefer to keep the restrictions imposed by CPLs� In practice� the
restrictions turned out to enforce a clear design and structure of lexicons�

On the one hand� the above mentioned extensions increase the expressiveness of the formal�
ism� on the other hand� they complicate the implementation and the work of the lexicon
formalism�

References

Carpenter� B� 
�		��� The logic of typed feature structures� Cambridge Tracts in Theoretical
Computer Science� New York� Cambridge University Press�

Covington� M� A� 
�		��� Natural language processing for Prolog programmers� Englewood
Cli�s� New Jersey� Prentice Hall�

Evans� R� and G� Gazdar 
�	�	�� Inference in DATR� In Proceedings of the �th Conference
of the European Chapter of the Association for Computational Linguistics� pp� ������

Russell� G�� A� Ballim� J� Carroll� and S� Warwick�Armstrong 
�		��� A practical approach
to multiple default inheritance for uni
cation based lexicons� Computational Linguis�
tics �� 
��� ��������

Russell� G�� J� Carroll� and S� Warwick�Armstrong 
�		��� Multiple default inheritance
in a uni
cation�based lexicon� In Proceedings of the ��th International Conference on
Computational Linguistics �COLING ��	� pp� ��������

Scowen� R� 
Ed�� 
�		��� Prolog
 part �� general core� committee draft �ISO�IEC JTC�
SC

 WG�� N���	� Teddington� England� National Physical Laboratory 
for Interna�
tional Organization for Standardization��

Touretzky� D� S� 
�	���� The mathematics of inheritance systems� Research Notes in Arti�

cial Intelligence� London� Pitman Publishing�


