Research Report AI-1991-01
SALMON: a TEMPERAMENTAL

Program that Learns

Gregg H. Rosenberg

Artificial Intelligence Programs
The University of Georgia
Athens, Georgia 30602 U.S.A.

February 2, 1994

Abstract

A new approach to machine learning is introduced that utilizes seman-
tic information in a conmnectionist network. The approach is imple-
mented in a program that learns to act appropriately in the dynamic
environment of a children’s game of tag. The model is interesting in
several respects including the ability to begin with no connections and
then make and break them according to its experience, the ability to
adjust the weights on its connections and the ability to interact with
its environment.

1 Introduction

This thesis introduces a new approach to machine learning that uses as-
pects of semantic and connectionist systems. The name of the programming

1

technique is TEMPERAMENTAL programming. TEMPERAMENTAL
stands for The Effective Mlanagement of Process Evolution and Response in
an Associative Memory Emulating a Neural Type Action Language. The al-
gorithm has been implemented successfully as a program named SALMON
(Semantic Action Learner Modeled On Neurons) that learned an appropri-

ate strategy for a simulated game of tag from watching the other participants.
The main features of interest in a TEMPERAMENTAL program are:

1. The system is a self-organizing learner which uses experience in a dy-
namic environment to learn how to react appropriately in it.

2. The learner begins with only unconnected semantic nodes then makes
and breaks connections between them based on what occurs in the
environment.

3. The learner adjusts the weights of connections to conform to its expe-
riences in the environment.

4. Both the nodes and connections have semantic meaning, but the infor-
mation passed through the connections is numerical II la the connec-
tionist paradigm.

3. Despite its semantics, the algorithm is potentially as massively parallel
as other connectionist schemes.

Sections two and three describe TEMPERAMENTAL programming. Section
two contains information concerning the components of a TEMPERAMEN-
TAL system, and how TEMPERAMENTAL programs learn. Section three
details how activation is spread in a TEMPERAMENTAL network and how
the results are interpreted. Sections four through six deal with different
aspects of the implementation, section seven analyzes the results obtained
from the implementation, and section eight is a general discussion of issues
raised by TEMPERAMENTAL programming and possible directions for fu-
ture work.

2 TEMPERAMENTAL programming

TEMPERAMENTAL programming is a hybrid scheme which uses the in-
terpretive power of semantics and the pattern recognition and parallelism of
connectionist strategies to learn about a dynamic environment. It connects
nodes with semantic meaning using links that also have semantic meaning,
but weights the links numerically and has them activate the nodes in paral-
lel. Once trained, the activation and the semantics cooperate by combining
their knowledge to decide upon an action given the current circumstances.
The key ideas taken from connectionism are parallelism and communication
through numeric activation rather than semantic message passing. The key
ideas taken from semantics are consistent interpretation of symbols and pro-
cedural interaction with an environment.

2.1 Node Types

There are four types of nodes in a TEMPERAMENTAL system: objects,
dynamic attributes, actions and action attributes.

1. Objects — each object in the environment is assigned a node with a
unique label. Objects have a full repertoire of connectionist behaviors,
these being the reception, accumulation, and passing along of activation
energy.

2. Dynamic Attributes — Each environment has a set of attributes, like a
particular location, that an object may or may not possess. These are
called dynamic attributes and a node with a unique label is assigned to
each attribute. Dynamic attributes act as conduits for activation from
objects to other nodes but do not accumulate activation themselves.

3. Actions — An action is a change to an attribute or the value of an at-
tribute of one or more objects. Each action in the environment is given
a node with a unique label. Like objects, action nodes have the full
repertoire of connectionist behaviors including reception, accumulation

and transference of activation. In addition, action nodes have a pro-
cedure and a function associated with them. The function accepts an
object and determines if the action is enabled with respect to that ob-
ject. The procedure contains the semantic instructions for performing
the action when the node is activated.

4. Action Attributes — Many actions can be performed in more than
one way. For instance, a player in a game of tag must decide not
only to flee, but also in which direction to flee. The direction can
be thought of as an attribute of the action. One node with a unique
label is assigned to each possible attribute of each action defined. The
attribute is explicitly bound to the action it is responsible for helping
to perform. One attribute may belong to many actions. The action
attributes accumulate activation but do not transfer it.

2.2 Connection Types

Connectionist networks normally define their connections by the type of ac-
tivation that they convey. Thus the connections are either inhibitory or
excitory. Semantic systems usually define their connections by the type of
relationship that they represent. Thus, we have IS-A links, HAVE links,
MEMBER links and so forth. TEMPERAMENTAL programs do both. Each
connection is assigned a semantic meaning used in making the connection and
in adjusting its weights. It is also assigned a role in spreading activation that
defines it as either a companion, excitory, or enemy connection. Finally,
each connection is assigned a directionality. Being a companion or an enemy
connection in a TEMPERAMENTAL system is not the same thing as being
inhibitory or excitory in a normal connectionist network. Companion con-
nections between two nodes represent, with a certain strength, the possibility
that the two nodes will co- activate. Enemy connections represent the possi-
bility, with a certain strength, that two nodes will not co-activate. Therefore,
whether a connection passes along an inhibitory or an excitory signal depends
not only on what kind of connection it is, but also on what kind of activation
the node received. If a node receives an excitory signal then it would send an
excitory signal along its companion connections. But if the signal received

by the node was inhibitory, then it would send inhibitory signals along its
companion connections. In general we can think of the activation received
by a node as containing a message. Excitory activations contain the message
that, “You are my friend.” Inhibitory activations contain the message that,
“You are my enemy.” The goal is not to pass the form of the message along
intact, but rather the content. Therefore, we can follow these old proverbs:

"The friend of my friend is my friend."
"The enemy of my friend is my enemy."
"The friend of my enemy is my enemy."
"The enemy of my enemy is my friend."

After running experiments with the system I found that it was absolutely
necessary for there to be strictly excitory connections as well as companion
connections. The justification can be understood by imagining this situation:
Let’s say that a friend of yours has the peculiar habit of walking backwards
every once in a while. After he walks backwards he always walks forwards
again. Now, of course you will get an expectation that he will walk back-
wards from seeing him walk backwards, but from seeing him walk forwards
again you also will get a negative expectation (called an exclusive connection
in TEMPERAMENTAL programming) that he will walk backwards (these
connections are talked about soon). Further, he always walks forwards after
he walks backwards so you get a very strong positive expectation that this
will be the sequence of events. Now, since he does not walk backwards very
often, your negative expectation for his walking backwards grows very strong,
stronger than your positive expectation that he will walk backwards. When
wondering whether your friend will walk forwards or backwards, which will
you say? Intuitively, you will say that he will walk forwards. But imagine
that the expectation for the sequencing is a companion connection as outlined
above. There is a very strong negative expectation that gets fed to walking
backwards, and walking backwards has a very strong companion connection
to walking forwards through sequencing. This companion connection is a
path that will convey this strong negative expectation about walking back-
wards to walking forward. Because the weight of the sequence connection is
so strong the negative energy is not diminished very much as it moves along
the path, and it may even be enough to cause you to have more belief that

he will walk backwards than you do that he will walk forward.

That is all wrong! Just because you don’t believe something will happen
doesn’t mean that you also believe what usually follows it won’t happen. You
remain neutral regarding what will follow it. If the preceding action A occurs,
then it raises your expectation that the following action B will occur, but the
unlikelihood of A merely means that B will have to get activation from some
other source if it is to compete with your other expectations. Therefore, your
sequencing expectations are not companion but strictly excitory. Another
way of putting it is to remember that companion connections represent co-
activation, but sequences are serial activations, not co-activations. Therefore,
sequence expectations are not companions.

In the following discussion the terms “giver node” and “giving node” refer
to the node which passes activation along in the connection. The terms “re-
ceiver node” and “receiving node” refer to the node which acquires activation
from the connection. In two-way connections both nodes are givers and also
receivers.

1) Expectation Connections — Expectation connections are formed between
objects and the actions that they perform. The heuristic is, if an object is
performing an action then establish an expectation connection between the
object and the action. Expectation connections are two-way and companion.

2) Exclusive Connections — Of course, sometimes attributes an object pos-
sesses make it less likely to perform an action. Exclusive connections try
to capture these kinds of relationships. Formation of exclusive connections
is motivated by an object changing the action it is performing. When an
object stops performing an action, make an exclusive connection between
each attribute the object had at the moment it stopped and the action no
longer being performed. Also make a connection between the object and the
action. The idea is that the attribute responsible will eventually emerge as
the connection is re-enforced through the attribute’s continual presence when
the action is not being performed and absence when it is.

3) Focus Connections — The idea of a focus is currently ill defined. Many
actions seem to have them, though. If one object is pursuing another, the

focus of the action is the object being pursued. However, a focus relation is
not symmetric. A zebra may flee a lion even though the lion is not concerned
with the zebra at all; thus the lion is the focus of the zebra’s action but the
zebra is not the focus of the lion’s action. Vaguely, we can think of the focus
of an action as being the object which motivates it. The focus object of
giving flowers is a loved one, the focus object of driving to work is the place
of employment, etc.

In the performance of any action with a focus there are at least three nodes
involved, the performer, the focus object and the action. The TEMPERA-
MENTAL system makes a focus connection between the performer and the
focus object. The connection is two-way companion. The TEMPERAMEN-
TAL system also makes a connection from the action to the focus object.
The connection is two-way companion.

One reason the system makes separate connections for the action and the
performer is because it is naive. It does not know if this relationship holds
because of the focus object’s relationship to the performer or because of some
special relationship to the action, or both. For instance, the net must be able
to capture fixations one object might have for another without contaminating
the connection for the action in general. By separating the focus connections
we are able to maintain a strong relationship between the performer and the
focus object without the focus object becoming a fixation of the action also.

Another reason for making the connections separately is to reduce the num-
ber of connections the system has to make. The number of connections that
need to be made are roughly exponential to the number of nodes involved
in the connection. Full connectivity between four objects and five actions
in triplet form would require 80 (4x5x4) connections; however, in pairs of
doubles the same set of associations is represented with only 36 connections
(4x4) + (5x4). Finally, representation as pairs of doublets can be defended
on the grounds of ineffectiveness. More complicated connections would work
too well. A learner that remembered in triplets, or quadruplets, or whatever
is necessary would always know exactly what to expect. Why even have a
scene represented by sets of connections? Why not have the entire scene
captured in one big beautiful connection? The reason is that no learner
ever actually does learn that well. The doublets crystallize the correct ex-

pectation or response much of the time, but we cannot be sure they will do so.

4) Using Connections — Many actions require tools or use objects in some
other way. The TEMPERAMENTAL system should make connections to
these tools. Therefore, a two-way companion connection is made between
the object performing the action and the tool being used. Also, the system
makes a using connection from the action being performed to the object be-
ing used. The connection is two-way. The connection from the user object
to the used object, and the connection from the action to the used object
are separated for the same reasons given for separating the focus connections.

5) Sequence Connections — If an object is performing an action A one mo-
ment and an action B the next, then form a sequence connection from action
A to action B. The sequence connection is one-way and strictly excitory from

A to B.

6) Dependency Connections — Action attributes depend on the attributes
of the objects involved. Therefore, in a situation where object O1 is per-
forming action Al, using O2 with focus O3, make dependency connections
between Al’s current attribute and the attributes of O1, O2 and O3. The
dependency connections are from dynamic attributes to action attributes,
and the connection-making strategy is naive. For each object involved, make
a dependency connection from each attribute of the object to each current
attribute of the action.

7) Cooperative Connections — Each action has a function attached to it
that decides if any given object is able to perform an action. Cooperative
connections are formed based on the following rules.

a) If the action possesses attributes, then the object is enabled or disabled
with respect to action/attribute pairs, and not just the action.

b) If an action (or an action/attribute pair) is disabled with respect to an
object one moment and enabled the next, then make a cooperative connec-
tion from the disabled object to the action the object was just performing.
Again, the connection making strategy is naive and the connection is one-way
companion from the newly enabled action to the actions which the object

was involved with.

8) Competitive Connections — Competitive connections are the opposite
of cooperative connections. If an action was enabled with respect to some
object and then becomes disabled, make competitive connections between the
newly disabled action and the action the object was just performing. The
connection is one-way enemy from the newly disabled action to the action
suspected.

Cooperative and competitive connections are meant to convey information
from an action to other actions about the likelihood that the other action’s
occurrence will enable/disable the action sending the activation. In real envi-
ronments, in addition to actions being disabled and enabled by other actions
an object performs, they may also be affected by actions that the object is
a focus of or used by, and also by circumstances arrived at indifferently to
the object. Presently, TEMPERAMENTAL programming does not take into
account this complication.

9) Connections from dynamic attributes to other nodes — Whenever a con-
nection is made between an object O and another node, then a connection
is also made between each dynamic attribute of O and the node.

2.3 Learning By Making and Breaking Connections

As mentioned, all the strategies for making the different kinds of connections
are naive. They will each result in many spurious connections between nodes.
This is done on principle. A connection is made between nodes only if one
does not already exist, and if a connection does not already exist then the
system has no way of knowing, a prior:, that it is spurious. TEMPERAMEN-
TAL programming balances its naiveté with methods for discovering and
breaking the spurious connections as it gains experience. Additionally, the
technique for spreading activation includes mechanisms to safeguard against
undiscovered spurious connections achieving an inordinate amount of influ-
ence. Finally, the TEMPERAMENTAL system has more than one learning
mode, and the rules for making connections are applied differently in each.

The learning modes are characterized as “Beginner” and “Expert,” but do
not take the names to mean that they model how beginners or experts actu-
ally learn. They just denote that one method is used early and the other later
in the learning cycle for the TEMPERAMENTAL program. Originally, they
differed in two important respects. They differed first concerning the level at
which they consider a connection to have degraded and gone bad, and sec-
ondly they differed in how they treat a connection that has degraded but is a
candidate for being reconsidered. After running experiments I found that a
rudimentary ability to discover and remove irrelevant connections that main-
tain strong weights was desirable. The system was extended to incorporate
this ability in expert mode.

After a connection is made, the weight on it is continually being adjusted to
reflect the system’s experience in its environment. Experience then causes
some connections to strengthen and others to weaken. When a connection
becomes too weak it is considered to have degraded and is broken, but it
is saved by the system in a list of “bad” connections. In Beginner mode,
the system sets a relatively low level for a connection to be broken. In
addition, if the TEMPERAMENTAL system subsequently has a reason to
form the connection again, it is automatically taken off of the “bad” list and
re-established at its previous strength level.

In Expert mode the system is more skeptical about its connections. The
level at which a connection is considered degraded and broken is higher and
it is not as easy to retrieve a connection from the “bad” list. A confidence
function is defined, and a connection is only retrieved from the “bad” list if
the system has confidence in it. Confidence is based on the experience the
system has working with the receiver node of the connection. Specifically,
the confidence function is:

¢ = BiasxSignal

If ¢ > 1 and the signal was excitory, then the system has confidence in the
connection, or if ¢ < 1 and the signal was inhibitory, then the system has
confidence in the connection; otherwise, the system does not have confidence
in the connection. The signal is the value received by the giver node and

10

that is being considered for transference to the receiver node. The Bias is
given by:

Bias = log;o(CurrentTotal)/log;o(Highest Total)

where CurrentTotal is the total number of opportunities on the weight records
of the connection under consideration, and HighestTotal is the highest num-
ber of opportunities from other connections from the same kind of node
(object, action, dynamic attribute, etc) that are also currently relevant to
the receiver node. The logjy of these totals is taken to flatten the shape
of the bias. Only large differences should play a significant role in shaking
confidence. Differences within an order of magnitude do not matter a great

deal.

For example, in the game of tag we may define a dynamic attribute for objects
that specifies their current distance from the tagged player. A dependency
connection from the dynamic attribute of distance to flee’s action attribute
for direction will be made whenever an object is fleeing from that distance.
We may represent the connection this way:

connection(dependency(da, aa),
distance(21, 23),
[flee, change(minusminus),
[[frequency, 3, 3], [recency, 11]1).

Distance (21, 23) means the player is between 21 and 23 units from the
it, [flee, change(minusminus)] is the receiver node and means that the
flee action should be in the minus X direction and the minus Y direction,
and the last spot contains the information for calculating the weight of the
connection. The frequency means that for 3 out of 3 times that an object
has been at that distance and fled, it has fled in the minusminus direction.

Now let us imagine there is another connection currently relevant to the
flee action. This signal comes from direction(plusplus) and goes to the
attribute change (plusplus). The weights are [[frequency, 450, 578],

11

[recency, 1]]. Naively, a connection of 450 out of 578 is weaker than a
connection of 3 out of 3. The question is, should we accept the weights
naively? The confidence function does not. The fact that one connection
has only had 3 chances to be related to the flee attribute while the other has
had 578 chances should be taken into account. It is likely that the perfect
correlation between the former weight was just coincidence resulting from
the smaller sample size. We use the larger total as a standard to bias the
multiplier. Therefore, we obtain a bias

Bias = 10g10(3)/10g10(578) =0.172

The bias is used to obtain the confidence for the activation signal. Say the
signal is 1.4, then

c=14x0.172 = 0.24

Since 1 is the neutral signal, the bias has changed the signal from excitory
to inhibitory and there is no confidence in the connection.

Experiments turned up the need for a test for spuriousness independent of
the strength of the connection or the confidence in it. Some connections
from attributes to other nodes will remain strong because there are only a
small number of actions to be performed, and the attribute has no effect
on performance. Since the attribute has no effect on performance, the con-
nection simply records the independent tendency of the system to perform
the particular action and this tendency may be very high. Therefore, the
connection never becomes weak and never degrades. Additionally, it may
be an attribute that the objects possess quite frequently, thus making its
opportunities high, enabling it to pass the confidence test. To catch these
kinds of connections the TEMPERAMENTAL system implements a rele-
vancy test for keeping a connection when in Expert mode. Because it was
added late, the mechanism is quite crude and only tests for the relevancy
of connections between dynamic attributes and actions. However, I believe
that natural extensions to the present theory would smoothly allow more so-

12

phisticated tests'. The relevancy test hinges on the variation of connection
strength between different values of a dynamic attribute and the action being
considered. A connection between a dynamic attribute’s value and an action
is relevant if it satisfies at least one of these criteria:

1. The frequency on the connection for this value of the attribute varies
significantly from the average frequency for connections between the
other values of the attribute and the action.

2. a) Some values of the attribute are not connected to the action,

b) the unconnected values possess some connections to some actions,

AND

c) the system has confidence in at least one of these connections.

3. The dynamic attribute has only one value.

The explanation for 2 is simple. If only some values of an attribute are
connected to the action, then the system must decide if this implies that
the connection from the attribute value under consideration to the action
under consideration is, indeed, significant. To decide, it checks to see if the
unconnected values have been encountered before. If they have been encoun-
tered frequently enough that the system has gained confidence in one of the
connections from them, then the system assumes that the reason the uncon-
nected value is unconnected is because the value of the dynamic attribute
does, indeed, make a difference. On the other hand, if it has no confidence
in any connections to the unconnected value (meaning that it does not have
much experience with it), then it makes the assumption that if the connec-
tion existed, then it would not make a difference to the final average. If a
connection is deemed irrelevant, it is put on a list of irrelevant connections
and can never be retrieved.

!The extensions that I have in mind include establishing category nodes for dynamic
attributes and relations between dynamic attributes. The category nodes would help
control the flow of activation and are something I planned to add to a more sophisticated
system well before considering the relevancy issue. It is fortuitous that they should be
able to help with relevancy also.

13

To recap, in Beginner mode the level for degradation of connections is set
relatively low and connections are retrieved from the “bad” list readily. In
expert mode, the level for degradation is raised and a connection is retrieved
from the “bad” list only if the system has confidence in it, and a test for
the irrelevancy of connections between dynamic attributes and actions is
implemented. These two strategies applied serially are generally enough to
preserve the good connections and to remove the spurious ones.

2.4 Learning by Adjusting Weights

Unlike many other connectionist systems, the weights on connections never
settle into a learned state but are continually recalculated from moment to
moment to reflect the learner’s experiences in the environment. The weights
are calculated from the average of frequency and a recency function, or

w= (fq + £(rc))/2

The frequency portion of the weight also consists of two measures. The first
measure is of the frequency of success of the connection, and the second mea-
sure is of the number of opportunities to succeed that the connection has had.
Remember, each connection has a semantic meaning, and the meaning de-
notes a relationship between the nodes connected (focus, using, expectation,
etc). We use this semantic meaning to determine if the relationship between
the nodes is satisfied in the current moment. If it is, then we increment the
success portion of the frequency weight. We can also determine if the cur-
rent moment contained situations in which there was an opportunity for the
relationship to be satisfied. We then increment the opportunities portion
of the frequency weight for each opportunity found. The frequency is then
simply:

fq = Successes/0Opportunities

A connection is degraded if its frequency function falls below a set level. The
level is set by the learning mode, Beginner or Expert , that the TEMPERA-
MENTAL program is in.

14

While the frequency function reflects the overall trends in the environment,
TEMPERAMENTAL systems can also be biased towards the recent past. If
a relationship denoted by a connection is currently satisfied, we shall repre-
sent this by assigning the connection a recency weight of 1. If the relationship
could have been satisfied but was not, then the recency weight will be in-
cremented by 1 from whatever its current level is. Thus, if a relationship is
currently satisfied its recency goes to 1, and then if it goes 3 opportunities
without being satisfied the recency will be at 4. A limit on the amount re-
cency may be incremented is established, and the value associated with each
recency is between (0 and 1. The values are stored in a table with the number
1 having the highest value and the values then decreasing sharply downward.

The table used by SALMON had the values

recency_table(1, 0.80).
recency_table(_, 0.65).

The value given by 1 must be below 1.0 so that perfect correlations in the
frequency function do not endlessly cycle through the network. I tried differ-
ences greater than (.15 between the high value and the low value, but they
seemed to cause the system to continually repeat it’s last action. 0.80 seems
to work well, at least for this particular implementation. The other weight
was similarly hand-tuned. As it turns out, the rule governing what values
should be in the table is the obvious one — they should reflect the effect
recency has in the environment to be learned. Since the simulation I wrote
to act as an environment for SALMON only biases its players towards their
most recent behavior without regard for more than the immediate past, only
the value for 1 should be biased in the learner. Allowing many more levels
of “memory” by adding to the table produces a bias towards recent behavior
not found in the simulation.

2.5 Adjusting Particular Connections

1) The Expectation Connection — The expectation connection is satisfied
if object O is performing the action expected. An opportunity occurs if the
object is enabled to perform the action.

15

2) The Exclusive Connection — An exclusive connection between attributes
and actions is a success if the object is not performing the action, is en-
abled to perform the action, and has the attribute. An opportunity for an
exclusive connection occurs whenever the object has the attribute, was pre-
viously performing the excluded action, and is currently enabled to perform
it. Successes and opportunities between objects and actions in exclusive con-
nections are judged similarly, except the judgement is made without regard
to attributes the object may possess.

3) Focus Connections — The focus connection between objects is satisfied
between O1 and O2 if O2 currently is the focus of O1’s action. There is an
opportunity if some object is the focus of O1l. The focus connection from
an action to an object is satisfied if the object is currently the focus of the
action. An opportunity exists if the action is being performed. Since an
action can be multiply instantiated, the adjustment must take into account
each instantiation.

4) Using Connections — A success in a using connection between objects
01 and O2 occurs if O1 is using O2. An opportunity occurs if O1 is using
something. A success for using connections between objects and actions
occurs for an action A and an object O2 if the action A is currently using
0O2. An opportunity occurs if the action is being performed and is using
something.

5) Sequence Connections — A success for a sequence connection from Al to
A2 occurs if an object is performing A1 one moment and A2 the next. An
opportunity occurs if an object was performing Al at the previous moment.

6) Dependency Connections — A successful dependency connection occurs
when an object is performing the action with the specified attribute, and
either it has the dynamic attribute or the focus of its action has the dynamic
attribute. An opportunity occurs if an object is performing the action and
either the object or its focus has the attribute.

7) Cooperative Connections — A success for a cooperative connection occurs
if the giving action in the connection becomes enabled with respect to an ob-
ject after being disabled, and the object just performed the receiving action.

16

An opportunity occurs simply if the giving node was disabled with respect to
an object and the receiving action was performed by the object. An alterna-
tive way to count an opportunity would be if the giving node changed states
from disabled to enabled. This alternative method captures the likelihood
that a change in state is caused by the receiving node, whereas the method
used captures the likelihood that the receiving node being performed will
cause the change in state. Since the connection is used by the giver to enable
itself, the method used was deemed to provide the more valuable information.

8) Competitive connections — A competitive connection is a success if the
giving action was enabled with respect to an object, and became disabled
after the object was performing the receiving action. An opportunity is
occurs if the giving action was previously enabled and then becomes disabled.

3 Spreading Activation

Once the TEMPERAMENTAL learner has had a significant number of mo-
ments observing the environment he may participate. Participation in an
environment occurs by inputting activation into the connectionist network
it built as an observer and letting the activation spread through the nodes.
Before spreading activation, all nodes have their activation levels returned to
a “start” point. There is no need to save the activation levels from previous
computations because the result is captured in the recency weights on the
connections. The input nodes into the net are the ones corresponding to the
objects presently in the environment and the actions that they are perform-
ing. Thus, the nodes input into are not fixed, but rather change with every
moment. This is in stark contrast to many other connectionist architectures,
particularly those which use back-propagation, which are arranged hierarchi-
cally with fixed input and output nodes. Each node passes activation along
its connections to other nodes and uses the information on the connections
to determine a transfer value for the activation. Following is a discussion of
the factors used to calculate the transfer value.

17

3.1 Relevance of a connection

Nodes form many connections, not all of which are relevant at any given
time. Before a connection can transfer a signal from one node to another,
it must pass a relevance test. A connection is relevant if one or more of the
following are true:

1. At least one of the nodes is the relevant object.

2. The connection is a sequence connection and the relevant object is
enabled with respect to the giving node.

3. At least one of the nodes is a dynamic attribute of the relevant object.

4. The connection is not an expectation or exclusive connection and at
least one of the nodes is currently the focus of the relevant object.

3. The connection is not an expectation or exclusive connection and at
least one of the nodes is a dynamic attribute possessed by an object
that currently is the focus of the relevant object.

6. The connection is an expectation or exclusive connection, at least one of
the nodes is currently the focus of the learner, and the focus is enabled
with respect to the action involved.

7. The connection is an expectation or exclusive connection, at least one of
the nodes is a dynamic attribute possessed by an object that currently
is the focus of the learner, and the focus is currently enabled with
respect to the action involved.

8. The relevant object is currently the focus of at least one of the nodes.
9. At least one of the nodes is an attribute of an object which currently

has the relevant object as its focus.

The relevant object is usually the learner but may be changed dynamically to
suit the system’s purpose. Detailed discussion of tests 4 — 7 is deferred until
section 9. Activation is input into the network as excitory through the nodes

18

corresponding to each object and each action present in the environment.
The point of view of the learner is achieved by biasing the input into the
nodes representing itself and the action it is currently performing. The bias
multiplies the normal input level.

3.2 The Transfer Function

Each input represents a signal which increases the activation level of the
node receiving it. Signals above one are excitory and signals between 0 and 1
are inhibitory. Every time a signal passes through a connection, it is moved
closer to the neutral value. Eventually all activation stops as the signals
expend their energy moving through connections. The transfer function takes
the values stored in the connection as arguments and determines how much
energy the signal will expend traversing the connection. When an activation
expends so much energy traversing a connection that it falls within a defined
neighborhood of 1, then it is exhausted and is not transferred.

All signals are input as excitory. If an excitory signal must pass through an
enemy connection, then it becomes inhibitory. If M is the excitory value of
the signal, then 1/M is the inhibitory value. Conversely, an inhibitory signal
passing through an enemy connection becomes excitory (see section 2.3). If
M is the value of the inhibitory signal, its corresponding excitory value is
1/M. Otherwise, the signal maintains its type.

We define for each connection a raw weight. The raw weight of a connection
is the average of the frequency function and the recency function given by

rw = (fq + £(rc))/2 (see section 2.4)

The actual weight of the connection is dependent on the type of signal being
transferred. If the signal being transferred is inhibitory then the actual weight
is given by

actual = 1/rw

19

Otherwise, actual = rw

The signal received is multiplied by the actual weight of the connection, which
always moves the signal closer to 1 than it was before passing through the
connection. If it becomes too close to 1 then the signal is not transferred.
An additional check is made by passing the signal and connection to the
confidence function. The confidence function bias may move the activation
even further towards the neutral level. Recall, the confidence bias is given

by
Bias = logjo(Giver)/logo(HighestRelevant)

where Giver is the opportunity value on the connection the signal is passing
through, and HighestRelevant is the highest opportunity of any connection
currently relevant to the receiver node, the reciever node is also receiving in
the HighestRelevant connection, and the giver node in the HighestRelevant
connection is of the same type as the giver node in the Giver connection (See
section 2.3 for a detailed discussion of the confidence function). If the signal
fails the confidence test then it is not transferred. When signals are passed
through object nodes, three things occur.

1. The object’s activation level is multiplied by the signal received.
2. The signal is transferred to all relevant nodes connected to the object.

3. The signal is transferred to all relevant nodes connected to the object’s
dynamic attributes.

When activation is passed through an action, two things occur.

1. Tts activation level is multiplied by the signal.

2. The signal is transferred to all relevant nodes connected to it.

Dynamic attributes do not have activation levels. They merely act as con-
duits for signals from objects to other nodes. The transfer function for a

20

connection involving a dynamic attribute is exactly the same as for connec-
tions involving any other kind of nodes. There is no penalty as the signal
moves from the object to its dynamic attributes, but the transfer function is
applied as the signal propagates from the dynamic attribute to other nodes.

Currently, a signal passing through a dynamic attribute is finagled some-
times. More than one object may possess any given attribute at any given
time. If many objects with relatively weak activation levels possess an at-
tribute, the nodes connected to that attribute receive a great deal of acti-
vation. Generally, this is enough to overpower the effect of any dynamic
attributes represented by only a single object. However, this group effect is
often not desirable, as the system is really concerned only with the effects
associated with individuals and does not care how they are grouped. To
correct this grouping effect, whenever a signal is passed through a multiply
instantiated dynamic attribute the system biases the signal in the follow-
ing way — divide the activation level of the object the signal is emanating
from by the highest activation level of the other objects with the dynamic
attribute, and then multiply the signal by this ratio. That is, if object O is
passing a signal M through its attribute DA, then

GroupingBias = activation level(O)/activation level(O,)

where O, is the most highly activated object possessing that attribute.

In principle, a multiply instantiated attribute could still greatly affect the re-
sult obtained in the network, but in practice activation levels quickly diverge
so only the activation from the most highly activated possessor has much
influence. Of course, sometimes a group effect is appropriate. This solution
is temporary and, admittedly, a compromise. A better solution would be for
the system to determine for itself when a group effect matters, and choose
its strategy for spreading activation appropriately.

Action attributes merely collect activation. They do not transfer it. So when
a signal is received by an action attribute then the attribute’s activation level
is modified and the activation stops there.

21

3.3

Choosing an Action

Once activation has been input and spread into the network, then the learner
decides on the course of action to be taken. There are no thresholds in
TEMPERAMENTAL programs. Competition between nodes is strictly the
accumulation of wealth, wealth being represented by the activation level.
The procedure for choosing an action is as follows:

. Choose the action with the highest activation level.

If the learner is enabled with respect to this action, go to choosing an
attribute.

Else choose the action with the next highest activation level.

Go to step 2.

Once an action has been chosen, then the system must decide on an attribute.
The procedure is as follows:

1.
2.
3.

If the action has no attributes, perform the action.
Else, choose the attribute with the highest activation level.

If the learner is enabled with respect to this action/attribute pair then
perform the action with that attribute.

Else, input activation into the highly activated node and spread the
activation only through the cooperative and competitive connections,
then go to “Choosing an action.”?

2The algorithm does not call for the system to search for the next most highly activated
attribute because, generally, this is not reliable. It is not unusual for only the appropriate
attribute to have been activated. Therefore, choosing the next highest would be random.
Spreading the energy from the cooperative and competitive brings out the appropriate
response.

22

If the action requires a focus, then choose the highest activated object in
the environment which the semantics say is appropriate and available. If
the action requires a tool, then choose the highest activated object in the
environment which the semantics say is appropriate and available.

The execution of the action consists of running a procedure which affects the
properties or relationships of objects in the environment. These semantics
are responsible for specifying and choosing a focus if one is needed, and also
any tools. Additionally, it is responsible for making any changes in the tools,
focus or learner that are necessary. In execution of it’s duties, the semantics
are empowered to spread activation through the learner in appropriate ways,
including simulating other points of view by altering which node the input
bias is used on and sending signals to nodes which are not currently present
in the environment. This is how the system answers “What if?” questions,
and, also, can daydream. The daydreaming ability is realized by allowing ac-
tivation to be input into the network from within the TEMPERAMENTAL
program as well as by the environment. In principle, the TEMPERAMEN-
TAL system can activate any arbitrary combination of nodes and see what
consequences follow. This capability can be used to theorize, daydream,
imagine counterfactuals, etc. Its greatest advantage is that, harnessed and
used in a sophisticated manner, it could help the system learn.

4 SALMON

A TEMPERAMENTAL system has been implemented to learn the game of
tag by observing the execution of a discrete event simulation of the game.
The system was implemented in Quintus Prolog version 2.0 on a SUN Sparc-
station. The name of the implemented program is SALMON. The simulation
outputs a game state from moment to moment which is then translated by
an interface module into a predicate language that SALMON and his TEM-
PERAMENTAL learning mechanism can understand.

The only objects in the environment are the players. The number of players
varied from 4 to 7. The number of players does not affect SALMON’s per-
formance after he has learned, but during learning a high number of players

23

gives better results. Two factors are responsible. First, more players give a
statistically better sampling so we would expect better behavior. The sec-
ond reason has to do with the way the simulation is programmed. If a player
is being chased, it always flees. Therefore, if you have a small number
of players then one is always tagged and of the remaining players at least
one is always fleeing. Therefore, the sample becomes biased towards fleeing,
especially the sequence connections which will record the large number of
sequences that the chased player flees consecutively without the less deter-
mined sequences of the other players tempering it. After the learning period,
SALMON can be inserted as a player and participate in the game. Upon
insertion, the simulation simply transfers control to SALMON whenever it is
time to decide what his next move will be. After SALMON has decided and
executed his decision, control passes back to the simulation.

Six actions were defined for the game:

1. Flee — An untagged player flees by increasing the distance between
himself and the player currently tagged.

2. Tease — An untagged player teases by decreasing the distance between
himself and the player currently tagged.

3. Chase — The tagged player chases another player by decreasing the
distance between himself and the player being chased.

4. Count — After a tag has been made, the newly tagged player must
stand still and count for a specified number of moments.

3. Make-tag — If an untagged player is within one step of the tagged
player, then the tagged player may make a tag on the untagged player.
Making a tag consists of transferring the tagged attribute.

6. Stayput — A player may, at any time, stand still.

Three different kinds of dynamic attributes were defined which objects (play-
ers) in the environment can possess.

24

1. Being tagged — SALMON was informed who was currently tagged
by making tagged a dynamic attribute. In real life there are versions
of the game of tag, such as ball tag where the it carries a ball allowing
being tagged to be physically observable. We can think of this game of
tag as being like ball tag.

2. Distance from the it — Since the currently tagged player is the
focal point of the game, SALMON was informed of the distance each
player was from the it at each moment. This distance was presented
as a dynamic attribute of the players.

3. Direction from the it — The it was also considered the origin (0,0)
of a cartesian graph, and the direction that each player was from the it
was attached to objects as a dynamic attribute. The directions were (in
(X Y) notation): (plus plus), (plus minus), (plus same), (minus plus),
(minus minus), (minus same), (same plus), and (same minus).

The action attributes were the general direction which any of the movement
actions could take. They were mapped onto the direction from the it dynamic
attributes with the addition of (same same) for standing still.

5 The Simulation

The simulation was a discrete event simulation in which each player’s next
set of attributes was determined solely from his current set, mostly without
regard to changes in any other player’s attributes. The player’s strategies
were quite straightforward. If a player was tagged he chose another player
to chase based on a function of that player’s distance from him and the
difference in their speeds. Chasing a player meant decreasing the difference
between the pursuer’s X and Y coordinates so that they converged towards
the chased player’s coordinates.

Player’s who were untagged had a choice of actions: tease, flee, and
stayput. Functions were also defined for these actions based on a player’s
current distance from the it and the difference in speed between the player

25

and the it. This function returned a value between 0 and 1. A uniformly
distributed random number was generated, and if it was below the value
returned by the function then the action being considered was performed,
otherwise another action was considered. The functions were defined so that
faster or more distant players were more likely to tease or stand still. Slower
or nearer players were likely to flee. Fleeing players were not given knowl-
edge about how to use open space or any other sophisticated strategies. The
playing field was bounded and untagged players were not allowed to go out
of bounds.

6 The Interface to the Learner

SALMON was always provided with the following information about the
current moment and the immediately preceding moment. A translator was
responsible for asserting

1. clauses telling SALMON what objects were performing what actions,
with any attributes included.

2. clauses telling SALMON what the focus of each action and object was.

3. clauses informing SALMON what the dynamic attributes possessed by
the objects were.

4. clauses saying which actions were enabled and disabled with regard to
each object.

These clauses play the role of a rather sophisticated perceptual system. In
particular, informing SALMON of the focus of actions and objects assumes
a highly developed instinct. Such recognition in animals requires hardwired
instincts for recognizing certain traits in the environment; brightly colored
objects, sudden movement, movement in general, diminishing and increas-
ing distances, concepts of personal space, etc. Additionally, such recognition
uses inborn and developed abilities animals have to recognize what satisfies
and motivates them and allows them to project it to other creatures. For

26

instance, an animal is satisfied by food and so if it sees another animal stalk-
ing prey, killing it and eventually eating it, it is likely that it may know
by projection that the killed animal was the focus of all the killer’s action.
This is because the actions led to a situation it desires, namely, satisfying
hunger. When another animal satisfies a similar desire, then the observing
animal perhaps feels a titular satisfaction also, and uses this feeling to rec-
ognize that it should imitate. These subtle clues in the environment and the
internal models that allow animals to pick them out are presently beyond
the ability of the simulation to provide or TEMPERAMENTAL systems to
simulate. Therefore, it is necessary that focus information be provided to

SALMON.

The rules of the game were semantically encoded as enabling conditions on
actions. The rules were —

1. untagged players must stay in bounds.
2. only tagged players can chase, count or make-tag.
3. only untagged players can flee or tease.

4. a player may only count if the count is above one.

This information amounted to permission information for the different ac-
tions. A great deal was left for SALMON to learn. In particular, it had to
discover that flee meant moving away from the it, and, indeed, what it
means to move away. It had to discover that tease meant moving closer to
the it and what moving closer is. It had to induct the functions for deciding
when to flee or tease, meaning it had to tease more often when it was
far away or the it was slower and flee conversely. It had to discover what
to do when it reaches a boundary and cannot perform the action it would
most like to. It had to discover that it should make-tag when it is close to
another player. It had to discover that it should count after being tagged.
Finally, it had to learn to make the rather difficult judgement concerning who
to chase when it is tagged and what direction to move in to run the player
down. All in all, there was a great deal for the system to learn. Of course,
an on-going goal of TEMPERAMENTAL programming as a research effort

27

is to reduce the semantics that must be provided to the system. Performing
actions consisted simply of updating the X and Y coordinates of SALMON,
and his tagged attribute if necessary.

7 Results

The results were surprisingly good. The learning session consisted of 500
moments watching the simulation in Beginner mode and 1000 watching in
Expert mode. SALMON was then inserted into the game as various players.
Scripts were written to files and animated. To the naked eye, SALMON
appears virtually identical to the simulated players in an animation. Exami-
nation of the scripts and connections reveals a difference between SALMON’s
behavior and the other players.

Four scripts, inserting SALMON as a different player in each, were run for
200 moments each. Each script was begun from the same point in the ac-
tion. The simulation was then run from this same point without SALMON’s
participation. A comparison of the results of each run with SALMON to the
run without SALMON turned up some interesting results.

7.1 Analysis

We can list each of the items available for SALMON to learn:

1. Count after being tagged.

2. Chase after counting.

3. Choose a “reasonable” player to chase.

4. Move in the direction of the player chosen for the chase.

3. Tag players it is chasing when it gets close to them.

28

Flee when close to the it.
Flee more often if the it is faster than SALMON.

When fleeing, move away from the it.

© o »® e

Tease when further away from the it.

10. Tease slower players more often.

11. When teasing, move towards the it.

12. Choose an appropriate move when at the boundaries.

13. Stand still sometimes.

SALMON eventually learned to do 1-12 almost flawlessly. Still, finding a
training set that provided good tease behavior proved difficult. In no train-
ing set would SALMON stand still. SALMON’s difficulty in picking up both
these behaviors is related. Flee is performed more often by untagged players
than either tease or stayput. As the disparity grows larger from flee to
tease to stayput SALMON has more and more difficulty deciding when the
less frequently performed actions are appropriate, and defaults to the global
tendency. Especially apparent was the tendency for SALMON to continue
with whatever action it was performing. Of course, the sequence connection
was responsible for this tendency, especially in the case of fleeing which
quite often follows itself in time. In a situation in which tease has only a
small advantage over flee for the other connections, the sequence connection
tended to make a huge difference in favor of flee if SALMON was already
fleeing. Eventually, I was able to coax perfect behavior from SALMON but
it took a great deal of experimentation. The final result was not caused from
an ad hoc change, but rather resulted from the discovery of general faults
with the earlier versions of the system and corrections to them. The changes
were:

1. The criteria which determines the momentary relevance of connections
must direct the spread of activation adequately. Specifically, signals
from the sequence connections should not be spread unless SALMON

29

is enabled for the giver node in the connection. It makes no sense for
SALMON to consider what follows from actions that it cannot perform.

2. In the same vein, expectation and exclusive connections to an object
which is SALMON’s focus at the moment should not be spread unless
the focus object is enabled with respect to the action in the connection.
For example, if SALMON is focusing on the player that is the it,
SALMON should not spread activation to the expectation that the it
will flee.

3. The values in the recency table should accurately reflect the effect of
recency in the environment to be learned. Improper deviation’s can
cause SALMON to either care too much for the recent past or disregard
it totally.

4. The sequence connections should be purely excitory rather than com-
panion.

These corrections to the original algorithm are not fully general, but they are
not completely ad hoc either. Rather, they are moves in the right direction
that an expanded TEMPERAMENTAL model would have to improve upon.
The first three problems can be considered generally as controlling the spread
of activation (1 & 2) and correctly tuning the system’s parameters (3). More
detailed discussion of these problems is deferred until section 10. Correction
4, the redefinition of the sequence connection, occurred because the natal
stage of the theory made it easy to incorrectly define connections, not from
fundamental problems with the ideas behind the theory. Basically, the terms
need to be formalized. I did not realize that sequence connections should not
be companion because I was working with a vague, intuitive idea of it. All
the connections, nodes and other elements of the system need more formal,
precise definitions.

The weight adjusting algorithm was pathologically bad in the case of stayput.
It is unusual for a player in the simulation to perform stayput for more than
1, maybe 2, consecutive moments. Expectation connections were strength-
ened whenever an object performed an action it was enabled to perform,
and weakened whenever an object did not perform an action it was enabled

30

to perform. Oppositely, exclusive connections were strengthened when-
ever an object was not performing an action that it was enabled to perform
and weakened whenever an object was performing the action. Since ob-
jects generally had the same attributes (because they stood still) when they
stopped performing the stayput action as they had when they started, the
system strengthened the exclusive connection to stayput nearly every time
it strengthened the expectation connection! With these adjustments nearly
always canceling one another out, the system never really built any power to
excite stayput. I would like to add however, as a caveat, that TEMPER-
AMENTAL programming really was not designed to pick up on patterns
like stayput behavior and I never expected the system to do it. The sys-
tem is designed to be able to detect and mimic caused changes, whereas
the stayput behavior by the simulation’s players is not only the least fre-
quently performed, but also the most uniformly distributed action and the
one involving the least amount of change.

On the positive side, the system nearly always had the correct direction for
whatever action it performed. It always counted after being tagged, acted
reasonably at the boundaries and made the tag when it got close to a player
it was chasing. What was, to me, more impressive was the good behavior it
showed when it had to chase. I considered the chase decision to be the most
difficult it had to make and actually expected to get something more akin to
a random walk than a chase. Below is a typical excerpt from a script. In it,
SALMON is player number 4, the it. The first number in the clause is just
an index for the simulation to use in its memory management. The second
number is the player number. The next two are the X and Y coordinates,
and, finally, the value of the tagged property and action for each player. It
is informative to study the script from moment to moment. I provide com-
ments to point out the interesting facets of the chase.

moment(Index, Player Number, X, Y, Property Value, Action)
1 — The simulation is programmed so that the player being chased always
flees, so we know immediately that SALMON must be chasing players 1, 7,

or 2 since they are the only players fleeing.

moment(1,4,22.1559,13.5921 tagged ,chase)

31

moment(1,1,19.0,12.5,untagged, flee)
moment(1,7,17.9619,7.61374,untagged flee)
moment(1,2,17.0,3.25,untagged, flee)
moment(1,5,39.8124,8.29486 ,untagged, tease)
moment(1,3,41.8862,6.32001 ,untagged stayput)
moment(1,6,22.8083,9.09282,untagged tease)

2 — SALMON has continued to chase (as opposed to stayput, flee, count,
tease, make-tag, etc... we should remember it has to make a choice at every
moment) and has decreased both its X and Y coordinates. Unfortunately,
all the candidate players for being chased have lower X and Y coordinates
than SALMON so this doesn’t help us discover which it is chasing.

moment(2,4,20.7559,12.1921 tagged ,chase)
moment(2,1,17.5,11.0,untagged, flee)
moment(2,7,16.6619,6.31374, untagged flee)
moment(2,2,15.75,2.0,untagged, flee)
moment(2,5,38.4624,9.64485 untagged, tease)
moment(2,3,43.1661,5.04001 ,untagged flee)
moment(2,6,22.8083,9.09282 untagged stayput)

3 — SALMON has once again lowered his X and Y coordinate. Player 7
has decided to tease, so we know that it must be chasing 1 or 2. Notice that
SALMON does not chase in a direction where there are no players, nor does
it chase in a direction where the closest player is far away, like player 5 in
the +X, +Y direction.

moment(1,4,19.3558,10.7921 tagged ,chase)
moment(1,1,16.0,9.5,untagged flee)
moment(1,7,17.9619,7.61373,untagged tease)
moment(1,2,15.75,3.25, untagged,flee)
moment(1,5,37.1124,10.9948 untagged,tease)
moment(1,3,41.8861,6.32001 ,untagged,tease)
moment(1,6,21.2582,10.6428 untagged,tease)

4 — SALMON is consistent. It continues on its course and does not take a
random walk around the playing field.

32

moment(2,4,17.9558,9.39204 tagged ,chase)
moment(2,1,16.0,8.0,untagged flee)
moment(2,7,16.6619,6.31373 untagged flee)
moment(2,2,15.75,2.0,untagged, flee)
moment(2,5,35.7623,9.64484 untagged, tease)
moment(2,3,40.6061,7.60001 ,untagged,tease)
moment(2,6,22.8082,9.0928 ,untagged flee)

3 — SALMON appears to be closing in.

moment(1,4,16.5558,7.99204 tagged ,chase)
moment(1,1,16.0,6.5,untagged flee)
moment(1,7,15.3619,5.01373,untagged flee)
moment(1,2,15.75,3.25, untagged,flee)
moment(1,5,34.4123,8.29483 untagged, tease)
moment(1,3,39.326,8.88, untagged,tease)
moment(1,6,24.3582,7.5428 untagged flee)

6 — It will be a difficult choice who to finish off among the three players
all bunched up together.

moment(2,4,15.1558,6.59204 tagged ,chase)
moment(2,1,16.0,5.0,untagged flee)
moment(2,7,15.3619,3.71373 untagged flee)
moment(2,2,15.75,2.0,untagged, flee)
moment(2,5,33.0623,6.94483 untagged, tease)
moment(2,3,38.046,7.60001 ,untagged, tease)
moment(2,6,25.9082,5.9928 untagged flee)

7 — SALMON inexplicably raises its Y coordinate, perhaps distracted by
player’s 3 and 3, two of the slower players, both in that direction. A sim-
ulation player would never do this, so SALMON has not learned perfectly.
Actually, I considered this good. I wanted heuristic learning methods that
gave good behavior but not perfect behavior. I don’t know any perfect bio-
logical learners.

33

moment(1,4,16.5558,7.99203 tagged ,chase)
moment(1,1,17.5,3.5, untagged flee)
moment(1,7,16.6618,2.41373 untagged flee)
moment(1,2,15.75,2.0,untagged, stayput)
moment(1,5,31.7122,5.59483 untagged, tease)
moment(1,3,39.326,8.88, untagged flee)
moment(1,6,27.4582,4.44279 untagged flee)

8 — It seems back on track. SALMON has moved +X, —Y, so obviously it
is going after player 7. Player 1 is also in that direction but it is teasing so

can’t be the player being chased. Player 1 is pretty fast, but player 7 is slow.
The tease by player 1 should tempt SALMON.

moment(2,4,17.9557,6.59203 tagged ,chase)
moment(2,1,16.0,5.0,untagged, tease)
moment(2,7,17.9618,1.11373,untagged flee)
moment(2,2,15.75,2.0,untagged, stayput)
moment(2,5,33.0622,4.24483 untagged flee)
moment(2,3,38.046,7.60001 ,untagged, tease)
moment(2,6,29.0082,2.8928 untagged flee)

9 — SALMON is continuing after player 7. This is a good choice because
player 1 is faster than SALMON.

moment(1,4,19.3557,5.19203 tagged ,chase)
moment(1,1,16.0,3.5,untagged flee)
moment(1,7,19.2618,1.11373,untagged flee)
moment(1,2,15.75,3.25, untagged,flee)
moment(1,5,31.7122,5.59483 untagged, tease)
moment(1,3,36.7659,6.32001 ,untagged, tease)
moment(1,6,30.5582,1.3428 untagged flee)

10 — This is a tough situation for SALMON. The player it has been chasing,
player 7, is in the (plus minus) direction, but two players in the (minus mi-
nus) direction appear to be only a step or two away from being caught also.
I am not sure what the simulation would do in this circumstance.

34

moment(2,4,17.9557,3.79203 tagged ,chase)
moment(2,1,16.0,2.0,untagged flee)
moment(2,7,17.9618,1.11373,untagged flee)
moment(2,2,15.75,2.0,untagged, flee)
moment(2,5,30.3622,4.24483 untagged, tease)
moment(2,3,35.4859,5.04001 ,untagged,tease)
moment(2,6,32.1082,1.3428 ,untagged flee)

11 — SALMON goes after the two players and appears ready to finish off
the chase, decreasing its own X and Y coordinates for the second moment in
a row. I wonder if its decision here was affected by the grouping? It appears
close enough to tag either player 1 or player 2.

moment(1,4,16.5557,2.39203 tagged ,chase)
moment(1,1,16.0,3.5,untagged flee)
moment(1,7,19.2618,1.11373,untagged flee)
moment(1,2,15.75,3.25, untagged,flee)
moment(1,5,31.7122,5.59483 untagged flee)
moment(1,3,34.2059,3.76001 ,untagged, tease)
moment(1,6,33.6581,1.3428 untagged flee)

12 — SALMON decides to make the tag. Remember, the semantics do
not force it to do so; the system was free to continue chasing indefinitely.

moment(2,2,15.75,3.25,tagged ,count)
moment(2,4,16.5557,2.39203 untagged, make_tag)
moment(2,1,16.0,5.0,untagged flee)
moment(2,7,20.5618,1.11373,untagged flee)
moment(2,5,30.3622,4.24483 untagged, tease)
moment(2,3,32.9258,2.48001 ,untagged,tease)
moment(2,6,32.1081,2.8928 untagged, tease)

Sequences such as this are typical — and impressive. SALMON was quite
consistent in producing this kind of behavior when tagged. When untagged,
it also always chose a proper direction, the one real problem, as mentioned
earlier, is that it never stood still.

35

8 Issues Raised

Asit stands, SALMON and TEMPERAMENTAL programming cannot make
any strong claims about learning and cognition. Their most useful contribu-
tion is as an exercise for determining just what abilities a hybrid system built
along these lines might have, what limitations, and what problems need to
be addressed. This section is a discussion along those lines.

SALMON shares one limitation with human beings that is rather interesting.
As it tries to “think” about more than one issue simultaneously its perfor-
mance on all the issues deteriorates. This is a consequence of using a bias
on the input to simulate a point of view. If only one bias is used SALMON
performs very well. One bias is like asking it “What is object X (where X is
the object receiving the bias) going to do next?” But if you wish to ask it to
consider two or more situations simultaneously then the ordering of activa-
tion levels becomes less reliable. The highest activated objects and actions
sometimes may be appropriately paired together, but finding the appropriate
pairing for the second highest activated object and action is more difficult.
It is not a simple mapping. Since the brain is highly parallel I have always
thought it was mysterious that we must focus so often on a single issue in
order to think clearly about it. The answer to how a limitation like this can
arise in a parallel network is not obvious. Therefore, I find it interesting that
this kind of “concentration” which also is a property of animal intelligence
should emerge from the highly parallel TEMPERAMENTAL algorithm.

Neurons have been characterized simplistically as having all or nothing firing
behaviors. Accordingly, many connectionist nets use thresholds and have
nodes with all or nothing firing behavior. It is significant that TEMPER-
AMENTAL systems diverge from this behavior. The divergence can be de-
fended on two grounds, one from the point of view of connectionist systems
and the other from the point of view of semantic systems —

1) As a hybrid system, SALMON’s nodes represent complex concepts. These
concepts would likely be represented in the brain by many millions of neu-
rons and not a single neuron. With any given input, some neurons in this
representation will fire as activation spreads, even though the whole neu-

36

ral ensemble encoding the action or object may not. The various biases in
the TEMPERAMENTAL system, the confidence function and connection
weight, can be thought of as representing the proportion of neurons in the
ensemble representing the giving concept that will fire into the receiving con-
cept given a certain level of activation passed into the whole ensemble®. The
highes activation levels at the end then represent the ensemble which had
the highest number of individual neural firings during computation.

2) On mentalistic grounds, spreading activation through a transfer function
can be defended on the basis of communication between concepts. The TEM-
PERAMENTAL system must reason through time, and therefore must take
into account the future. Let us imagine that action nodes had thresholds
and the firing of a node represented a decision to perform the action. In this
case, the action could not have input from the future about whether or not
it should fire until after the decision was made! Admittedly, a more compli-
cated interpretation could be put on the firing of a node, but that would also
require a more complicated algorithm for spreading activation. It is better to
use a transfer function and have nodes “fire” only once, when computation

is finished.

Philosophically, SALMON gains expectations from the simplest possible in-
duction over experience. It is interesting that a calculation as simple as
the successes/opportunities ratio is enough to make the correct induction
when magnified and balanced in a network, even in SALMON’s simplified
world. Additionally, perfect correlations lead to very strong expectations.
SALMON’s highest action was often count regardless of the context. Only

30f course, I am not saying that the actual strength is captured by the weights on
the connection. All I mean to imply is that, in the brain, any ensemble of neurons will
have constituents receiving signals at any given time. Each of these individual neurons
participates in other ensembles and some will fire, sending signals here and others over
there. Some pairs of ensembles share more interconnections between constituent neurons,
and share more neurons, than others. We can think of the TEMPERAMENTAL weights
as vaguely representing the degree to which neurons are interconnected or outright shared
between concepts. Therefore, the entire concept does not have to “fire” to signal another
concept, but only has to pass along some proportion of the signals that its constituent
neurons send out from the signals that they receive. This is what the transfer function
does and explains why there are no thresholds on nodes.

37

the semantic enabling conditions kept it from always counting*. This is be-
cause the count action had a perfect expectation. It was always performed
whenever it was enabled. This seems interestingly like how we might take for
granted propositions like, “The sun will rise tomorrow morning.” SALMON
would not think of questioning the truth of that statement, and neither,
usually, do we.

8.1 Problems Exhibited by SALMON

Besides the grouping effect already written about, the model exhibited sev-
eral other troublesome tendencies. For instance, there are the spurious con-
nections SALMON cannot discover simply by having them degrade. For
example, whenever an untagged player performs a flee or tease action, a con-
nection is made not only to the player but also to the dynamic attributes
possessed. One of the dynamic attributes the player possesses will be the
direction he is from the it. So, an expectation connection is made, say, that

looks like this
direction(minusplus) ------ > flee

meaning that if an object has the direction(minusplus) attribute than it
should be expected to flee. This is spurious. However, currently there is no
way SALMON could discover this. The problem is that, on the whole, players
perform the flee action nearly 60are enabled to. The frequency function on
the weight is then nearly 60if he had a degradation level above 60simply
eliminate too many good connections. Therefore, SALMON must use the
relevancy test to discover these connections. However, I don’t feel the current

*Because so much emphasis has been put on explaining the learning components of the
system in this thesis, it may be tempting to think of SALMON’s semantic information
as a kind of cheating, but that is inappropriate. TEMPERAMENTAL programs are, by
design, hybrid systems with the semantic components in on way taking a back seat to the
knowledge contained in the connections. The whole point is that they can work together
to do things neither could do alone, or could only do with much more difficulty. It would
be just as easy to think of the connectionist components as cheating to make up for what
the semantics cannot do.

38

relevancy test is very general and TEMPERAMENTAL systems need more
sophisticated (and local) ways of discovering these kinds of connections.

Of course, this really points out a much broader problem. Namely, there is
a great art to defining a dynamic attribute. For instance, if we had other
objects like trees or fire hydrants or sidewalks or bushes in the playing field
they would also have directions and distances relative to the it. Still, we
would not tell SALMON this because it would throw off all its connection
weights. The programmer must make this choice for SALMON and the choice
is really on pragmatic grounds and not principle. SALMON should be able
to tell when an attribute is relevant for an object without being spoon-fed
good descriptions of the phenomena. Just as SALMON cannot tell if an
attribute is irrelevant despite its high correlation to an action, he cannot tell
if an attribute is not even worth noticing.

The result of this inability to distinguish correctly between relevant and
irrelevant attributes independently of connection strength can be a bias in
SALMON to perform the overall action tendencies of the simulation at the
expense of context. In plain English, this means SALMON never stood still.
Another problem is that there are many parameters in the model and the
quality of the connections is very sensitive to some of them. Particularly,
the parameter which sets the lowest weight allowed on a connection before
breaking it is crucial. If it is too high nonsense behavior can result. If it is too
low the number of connections increases rapidly and learning and decision
making slow appreciably.

I have already mentioned that the system is sensitive to the weights in the re-
cency table. If these weights do not reflect the effect of recency in the actual
environment then SALMON will not learn as effectively. In principle, the
model is not too sensitive to the strength of the input signals, as long as the
bias is 3 or greater. However, when input is too large the activation level of
the nodes goes to infinity very quickly. On the positive side, ultimately it may
not be necessary for the programmer to hand-tune the parameters. When
the TEMPERAMENTAL theory is extended to include feedback from the
environment it is likely that the system will be able to tune its own parame-
ters. Also, even though activation levels become very high with strong input
signals, the activation levels on SALMON’s nodes were usually irreversibly

39

ordered long before signals were fully spent. In general, the result obtained
after 500 or so signals had been passed produced an ordering that did not
change if signals were allowed to continue propagating until completely spent.
If something like this is generally true of TEMPERAMENTAL systems, and
I think it likely is, then the system can stop computation at this signaling
limit and not necessarily when signals are spent. Since the limit is low rel-
ative to the number of signals that would be passed if all were allowed to
expire, the system can probably avoid activation levels spiraling towards in-
finity even if the input signals are fairly strong. Most likely, the number of
signals that need to be sent is proportional in some way to the number of
relevant connections involved in the computation.

Finally, the nodes in the model compete with each other primarily indirectly,
by gathering connections. I feel there must be a place in the learning for more
enemy or even purely inhibitory connections. The problem is how to make
them. We can intuitively see that some actions compete with one another
even though they do not disable one another. For instance, the flee and
tease actions in a game of tag somehow “compete” in the sense that they
are exclusive options in a single scenario. But it is not at all obvious to me
how to provide a general heuristic for establishing these enemy connections
and, if necessary, adjusting their weights.

8.2 Areas to develop

Each problem listed above suggests an area of the model which needs more
development. In addition, there are areas not even addressed by the model
that should be tackled. The problem of discovering spurious connections
could be alleviated considerably if SALMON could learn by experimenting as
well as observing. SALMON has the ability, as he stands, to make predictions
about any aspect of his environment. There should be a way to make him
predict, check his results against what actually happened and then try to
discover the culprit(s) responsible for any incorrect predictions. Of course,
the problem of how to incorporate environmental feedback in learning is
universal in both semantic and connectionist systems.

40

SALMON’s problems arise not only from bad connections, but also from a rel-
atively naive way of spreading activation. He could possibly be provided with
introspective mechanisms for thinking about his connections, their meaning,
and then noticing and correcting deficiencies in how activation is spread
through them. Along these lines, an activation level could be provided to
each node for each kind of connection. Thus, it would have a focus activation,
a performance activation and a using activation. Multiple activation levels
would provide a smoother interface to the semantics when more complicated
actions have to be performed. The drawback would be that signals between
nodes would have to carry more than just numerical information. In general,
the nodes could move towards being something like frames with slots for each
type of connection. Each slot has multiple default values, the connections
attached to them, and the weight on the connection represents the strength
of the default assumption by the system. Activation is spread as in a normal
connectionist network and the slots become filled with the highest activated
nodes connected to them.

SALMON should be able to categorize attributes and objects. Ideally, it
should connect up attributes to objects in such a way that the psychological
prototypes investigated by Rosch (1978) emerge. This would require that a
TEMPERAMENTAL system be able to establish and retract nodes as well as
connections. These nodes would then have to play some role in the reasoning
process, perhaps conducting or filtering activation for their members the way
actions direct the choosing of attributes. Also, frequency tabulations on the
category nodes can help in deciding if a strong connection is, nevertheless,
irrelevant.

TEMPERAMENTAL systems should have goals and priorities that bias cer-
tain actions and direct attention, and hence input. The goals should compete
with one another and establish perspectives in the system. They should help
in organizing the categories discussed in the previous paragraph and the
organization should support planning. Incorporating goals will probably re-
quire meta-connections (connections to connections) and defining “types” for
groups of connections that can be discovered and classified. The system could
then activate the “type” just as if it were another node, thus bringing into
prominence the connections associated with it. Just as semantic procedures
are associated with action nodes, learned parameters would be associated

41

with meta-connection nodes and become dominant when the node is active.
This is all still very speculative, though.

The game of tag would be just one environment out of many a full TEMPER-
AMENTAL system experienced. Upon entering or considering an environ-
ment, the system would need to “crystallize” the appropriate set of responses.
The effect would be analogous to calling up a script, but the process would be
analogous to having a fluid super-saturated by many elements and knowing
the proper way of stirring up the solution so that just the proper one falls
out. This may be as difficult as it sounds but meta-connections may be the
key.

SALMON uses its dynamic attributes to react inside its environment, but
it does not have any idea that the attributes themselves are systematically
related. For instance, the attributes distance(1,3) and distance(3,5) are just
two nodes to SALMON. It has no concept of before or after for them, and con-
sequently could never purposefully move from distance(1,3) to distance(3,5).
Heuristics for organizing spatial and other attributes systematically through
connections need to be developed.

Overall, SALMON was a learning experience, not a technological or theo-
retical advance. As it stands, neither SALMON nor the TEMPERAMEN-
TAL method are either useful nor theoretically significant. However, there
is also much promise for the system. The success of SALMON in his do-
main, although not perfect, was encouraging. The problems that occurred
are problems that were anticipated, and I do not think their solutions entail
significant revisions to the model as it stands but rather an expansion of its
capabilities into a larger domain of mentality.

References

[1] Agha, Gul A. (1988) Actors:A model of Concurrent Computation in
Distributed Systems. The MIT Press, Cambridge, Mass.

[2] Arbib, Michael A. (1989) The Metaphorical Brain 2. John Wiley and
Sons, New York.

42

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]
[11]

[12]

[13]

Brachman, Ronald J. (1985) “I Lied About the Trees”, Or, Defaults
andDefinitions in Knowledge Representation.” The Al Magazine, 6.3,
Fall : pp. 80-93.

Carpenter, Gail A. and Grossberg, Stephen. (1987) ‘Invariant Pattern
Recognition and Recall By an Attentive Self-Organizing ART Architec-

ture in a Nonstationary World.” Proceedings of the IEEE International
Conference on Neural Networks. Vol. 1.: pp. 736-742.

Carpenter, Gail A.; Grossberg, Stephen. (1987) ‘ART 2: Self-
Organization of Stable Category Recoginition Codes For Analog Input
Patterns.” Proceedings of the IEEE International Conference on Neural
Networks. Vol. 1.: pp. 727-735.

Churchland, Patricia. (1989) Neurophilosophy. The MIT Press, Cam-
bridge, MA.

Davis, Lawrence and Steenstrup, Martha. (1987) “Genentic Algorithms
and Simulated Annealing: An Overview.” Genetic Algorithms and Sim-
ulated Annealing. Morgan Kaufmann Publishers, Inc., Los Altos, CA.:
pp. 1-11.

Holland, J.H. (1975) Adaptation in Natural and Artifical Systems. Uni-
versity of Michigan Press, Ann Arbor, MI.

Hofstadter, Douglas. (1983) “The Architecture of Jumbo.” Proceedingof
the 2nd Machine Learning Workshop: pp. 161-170.

Johnson, R. Colin, (1988) Cognizers. Chapel Brown, New York.

Lee, Y.C., ed. (1988) Ewolution, Learning, and Cognition. World Scien-
tific, New Jersey.

Minsky, M. (1975) “A Framework for Representing Knowledge.” The
Psychology of Computer Vision. PH . Win ston (ed.) McGraw Hill ,
New York: 211-277.

Minsky, M. (1986) The Society of Mind. Simon & Schuster, New York.

43

[14]

[15]

[16]

[17]

[18]

Reeke, George N, Sporns, Olaf, and Edelman, Gerald. (1989) “Synthetic
Neural Modeling: Comparisons of Population and Connectionist Ap-
proaches.” Connectionism in Perspective. Pleifer, R; et al (eds). North-
Holland , New York: pp 113-139.

Rosch, Eleanor and Lloyd, Barbara. (1978) Cognition and Categoriza-
tion. Lawrence Erlbaum Associates, Publishers, New York.

Rumelhart, D.E., McClelland, J.L. and the PDP Research Group. (1986)
Parallel Distributed Processing. Vol. 1: Foundations. MIT Press, Cam-
bridge, MA.

Schmidhuber, Jiirgen. (1988) “The Neural Bucket Brigade” Connection-
ism in Perspective. Pfeifer, R; et al (eds). North-Holland, New York: pp
429-437.

Von Seelen, W., Shaw, G. and Leinhos, U.M. (eds.) (1988) Organization
Of Neural Networks. VCH, Federal Republic of Germany.

44

