
��� � � � � � ���	�
�� � 	�	� ��� �����������
������� ��! ��"#��$�%'&(� $)� * ��$+� , � � � - ��.
, � � � $�* /0� � * � $)��12��� � 3 � � � 4546� �

78* � �)��� -�� !)9 � :(* $0. � $
;2< = > ?(@ > A B0C D = E B B > F E D�@ EHG�E D = E <
I#J E	K2D�> L�E < M > = N5O P�Q�E O < F > A

;�= J E D�M R)Q�E O < F > AHS T U T V W�X Y�Z [\K] ^(] ;]

Addendum to Research Report AI-1994-06

An important note about GULP 4

Michael A. Covington www.ai.uga.edu/mc
Artificial Intelligence Center
The University of Georgia

2007 September 12

GULP 3 (including the SWI-Prolog version) is not fully compatible with SWI-
Prolog version 5 and above. It conflicts not only with the module system, but also
with the built-in predicates edit/1, spy/1, and probably others.

Accordingly, I am introducing GULP 4, for SWI-Prolog only, with the following
new features:

• The module system is available with no conflicts of notation. However,
GULP translation occurs only in the module user (the default module).

• GULP translation occurs in queries typed at the ?‐ prompt.

As before, GULP translation also occurs when loading clauses from a file,
whether or not they are DCG rules and also when writing output using
print/1 (not write/1).

• The syntax for feature structures is

feature~value..feature~value

and not the older notation

feature:value..feature:value

As with all other Prolog operators, spaces before and after ~ and .. are
optional.

Existing GULP programs will need to be converted. Using the old
notation will cause error messages in many but not all contexts.

To do the conversion quickly, convert all : to ~ and then convert all ~‐ to :‐ . For
programs that do not use the module system, this is usually sufficient.

GULP 3.1: An Extension of Prolog for
Unification–Based Grammar

Michael A. Covington
Artificial Intelligence Center

The University of Georgia

Athens, Georgia 30602–7415 U.S.A.

mcovingt@ai.uga.edu

July 1994; reprinted with LATEX2ε March 2001

Abstract

This paper documents GULP 3.1, a simple extension to Prolog that facilitates im-
plementation of unification–based grammars (UBGs) by adding a notation for feature
structures. For example, a:b..c:d denotes a feature structure in which a has the
value b, c has the value d, and the values of all other features are unspecified. A
modified Prolog interpreter translates feature structures into Prolog terms that unify
in the desired way. Thus, the extension is purely syntactic, analogous to the automatic
translation of "abc" to [97,98,99] in Edinburgh Prolog.

This is a revision of the GULP 2.0 report (1989) and includes a tutorial introduction
to unification–based grammar.

Contents

1 Introduction 2

2 What is unification–based grammar? 3
2.1 Unification–based theories . 3
2.2 Grammatical features . 3
2.3 Unification–based grammar . 4
2.4 A sample grammar . 6
2.5 Unification . 6
2.6 Declarativeness . 9
2.7 Building structures and moving data . 10

3 The GULP translator 11
3.1 Feature structures in GULP . 11
3.2 GULP syntax . 12
3.3 Automatic translation . 12

1

3.4 The GULP environment . 13
3.5 Internal representation . 14
3.6 How translation is done . 15

4 GULP in practical use 16
4.1 A simple definite clause grammar . 16
4.2 A hold mechanism for unbounded movements . 19
4.3 Building discourse representation structures . 20
4.4 Left–corner parsing . 24

5 Future Prospects 27
5.1 Possible improvements . 27
5.2 Keyword parameters via GULP . 27

6 References 28

1 Introduction

A number of software tools have been developed for implementing unification–based gram-
mars, among them PATR–II (Shieber 1986a,b), D–PATR (Karttunen 1986a), PrAtt (John-
son and Klein 1986), and AVAG (Sedogbo 1986). This paper describes a simple extension to
the syntax of Prolog that serves the same purpose while making a much less radical change
to the language. Unlike PATR–II and similar systems, this system treats feature structures
as first–class objects that appear in any context, not just in equations. Further, feature
structures can be used not only in natural language processing, but also to pass keyword
arguments to any procedure.1

The extension is known as GULP (Graph Unification Logic Programming). It allows
the programmer to write a:b..c:d to stand for a feature structure in which feature a has
the value b, feature c has the value d, and all other features are uninstantiated. The in-
terpreter translates feature structures written in this notation into ordinary Prolog terms
that unify in the desired way. Thus, this extension is similar in spirit to syntactic de-
vices already in the language, such as writing "abc" for [97,98,99] or writing [a,b,c] for
.(a,.(b,.(c,nil))).

GULP can be used with grammar rule notation (definite clause grammars, DCGs) or
with any parser that the programmer cares to implement in Prolog. GULP’s use of the
colon does conflict with the use of the colon to designate modules, but so far, this has not
caused problems.

1This document supersedes the GULP 2 report (Covington 1989), but GULP 2 continues to be the latest
version available for some Prolog compilers. The first version of GULP (Covington 1987) was developed
with support from National Science Foundation Grant IST–85–02477.

2

2 What is unification–based grammar?

2.1 Unification–based theories

Unification–based grammar (UBG) comprises all theories of grammar in which unification
(merging) of feature structures plays a prominent role. As such, UBG is not a theory of
grammar but rather a formalism in which theories of grammar can be expressed. Such
theories include functional unification grammar, lexical–functional grammar (Kaplan and
Bresnan 1982), generalized phrase structure grammar (Gazdar et al. 1986), head–driven
phrase structure grammar (Pollard and Sag 1987, 1994), and others.

UBGs use context–free grammar rules in which the nonterminal symbols are accompanied
by sets of features. The addition of features increases the power of the grammar so that it
is no longer context–free; indeed, in the worst case, parsing with such a grammar can be
NP–complete (Barton, Berwick, and Ristad 1987:93–96).

However, in practice, these intractable cases are rare. Theorists restrain their use of
features so that the grammars, if not actually context–free, are close to it, and context–
free parsing techniques are successful and efficient. Joshi (1986) has described this class of
grammars as “mildly context–sensitive.”

2.2 Grammatical features

Grammarians have observed since ancient times that each word in a sentence has a set of
attributes, or features, that determine its function and restrict its usage. Thus:

The[
category : determiner

] dog[
category : noun
number : singular

] barks.

category : verb
number : singular
person : 3rd
tense : present

The earliest generative grammars of Chomsky (1957) and others ignored all of these
features except category, generating sentences with context–free phrase– structure rules such
as

sentence → noun phrase + verb phrase

noun phrase → determiner + noun

plus transformational rules that rearranged syntactic structure. Syntactic structure was
described by tree diagrams. Number and tense markers were treated as separate elements
of the string (e.g., boys = boy + s). “Subcategorization” distinctions, such as the fact that
some verbs take objects and other verbs do not, were handled by splitting a single category,
such as verb, into two categories (verbtransitive and verbintransitive).

But complex, cross–cutting combinations of features cannot be handled in this way, and
Chomsky (1965) eventually attached feature bundles to all the nodes in the tree (cf. Figure
1). His contemporaries accounted for grammatical agreement (e.g., the agreement of the

3

S

NP[
num : pl
case : nom

] V P[
num : pl

]

D[
num : pl

] N[
num : pl

]
V[

subcat : 1
num : pl

]

Two dogs bark.

³³³³³³³³

PPPPPPPP

"
"

"
"

"

b
b

b
b

b

Figure 1: A tree with features on every node.

number features of subject and verb) by means of transformations that copied features from
one node to another. This remained the standard account of grammatical agreement for
many years.

Feature copying is unnecessarily procedural. It presumes, unjustifiably, that whenever
two nodes agree, one of them is the source and the other is the destination of a copied
feature. In practice, the source and destination are hard to distinguish. Do singular subjects
require singular verbs, or do singular verbs require singular subjects? This is an empirically
meaningless question. Moreover, when agreement processes interact to combine features from
a number of nodes, the need to distinguish source from destination introduces unnecessary
clumsiness.

2.3 Unification–based grammar

Unification–based grammar attacks the same problem non–procedurally, by stating con-
straints on feature values. For example, the rule

(1) PP → P NP[
case : acc

]

says that the object of the preposition is in the accusative case, and

(2) NP[
number : X

] → D[
number : X

] N[
number : X

]

4

says that in a noun phrase, the NP, determiner, and noun all have the same number (singular
or plural).

More precisely, rule 1 says the feature structure [case : acc] must be unified (merged)
with whatever features the N already has, and rule 2 says that [number : X] must be unififed
with whatever features the NP, D, and N already have. Here X is a variable that takes on
the same value on all three nodes. Thus, without specifying which features get copied from
where to where, the latter rule simply equates the values of number on all three nodes.

Strictly speaking, the category label (S, NP, VP, etc.) is part of the feature structure.
Thus,

NP[
case : acc

]

is short for:[
category : NP
case : acc

]

In practice, however, the category label usually plays a primary role in parsing, and it is
convenient to give it a special status.

Grammar rules can alternatively be written in terms of equations that the feature values
must satisfy. In equational notation, rules 1 and 2 become:

(3) PP → P NP
NP case = acc

(4) S → NP VP
NP person = VP person
NP number = VP number

or even, if the category label is to be treated as a feature,

(5) X → Y Z
X category = PP
Y category = P
Z category = NP
Z case = acc

(6) X → Y Z
X category = S
Y category = NP
Z category = VP
Y person = Z person
Y number = Z number

where X, Y, and Z are variables. Equations are used in PATR–II, PrAtt, and other imple-
mentation tools, but are not essential to GULP.

The value of a feature can itself be a feature structure. This makes it possible to group
features together to express generalizations. For instance, one can group syntactic and
semantic features together, creating structures such as:

5

syn :

[
case : acc
gender : masc

]

sem :

pred : MAN
countable : yes
animate : yes

Then a rule can copy the syntactic or semantic features en masse to another node, without
enumerating them.

2.4 A sample grammar

Features provide a powerful way to pass information from one place to another in a gram-
matical description. The grammar in Figure 2 is an example. It uses features not only
to ensure the grammaticality of the sentences generated, but also to build a representa-
tion of the meaning of the sentence. Every constituent has a sem feature representing its
meaning. The rules combine the meanings of the individual words into predicate–argument
structures representing the meanings of all of the constituents. The meaning of the sentence
is represented by the sem feature of the topmost S node.

Like all the examples given here, this grammar is intended only as a demonstration of the
power of unification–based grammar, not as a viable linguistic analysis. Thus, for simplicity,
the proposal to group syntactic features together is abandoned.

Now look back at Figure 1, which shows a complete sentence generated by this grammar.
Note that all the constraints specified in the rules are obeyed. If they weren’t, the unification
would fail somewhere. Because the grammar treats feature copying equationally rather than
procedurally, the same grammar can be used to parse bottom–up, top–down, or in other
ways.

2.5 Unification

Our sample grammar relies on the merging of partially specified feature structures. Thus,
the subject of the sentence gets case from one rule and person and number from another.
This merging can be formalized as unification. The unifier of two feature structures A
and B is the smallest feature structure C that contains all the information in both A and B.

Feature structure unification is equivalent to graph unification, i.e., merging of di-
rected acyclic graphs, as defined in graph theory. The unifier of two graphs is the smallest
graph that contains all the nodes and arcs in the graphs being unified. This is similar but
not identical to Prolog term unification; crucially, elements of the structure are identified
only by name, not (as in Prolog) by position.

Formally, the unification of feature structures A and B (giving C) is defined as follows:

1. Any feature that occurs in A but not B, or in B but not A, also occurs in C with the
same value.

2. Any feature that occurs in both A and B also occurs in C, and its value in C is the
unifier of its values in A and B.

6

(1) S → NP[
case : nom
num : X

] V P[
num : X

]

(2) V P[
num : X

] → V[
subcat : 1
num : X

] (for verbs without objects)

(3) V P[
num : X

] → V[
subcat : 2
num : X

] NP[
case : acc

] (for verbs with objects)

(4) NP[
num : X

] → D[
num : X

] N[
num : X

] (number agreement)

(5) NP[
case : C
num : X

] → Pronoun[
case : C
num : X

]

(6) Pronoun[
num : sg

] → it (both nom. and acc.)

(7) Pronoun[
case : nom
num : pl

] → they

(8) Pronoun[
case : acc
num : pl

] → them

Figure 2: A unification–based grammar that parses and generates a small subset of English.
(Continued on next page.)

7

(9) N[
num : sg

] → dog

(10) N[
num : pl

] → dogs

(11) D[
num : sg

] → a

(12) D[
num : pl

] → two

(13) D → the (both singular and plural)

(14) V[
num : sg
subcat : 1

] → barks

(15) V[
num : pl
subcat : 1

] → bark

(16) V[
num : sg
subcat : 2

] → scares

(17) V[
num : pl
subcat : 2

] → scare

8

Feature values, in turn, are unified as follows:

1. If both values are atomic symbols, they must be the same atomic symbol, or else the
unification fails (the unifier does not exist).

2. A variable unifies with any object by becoming that object. All occurrences of that
variable henceforth represent the object with which the variable has unified. Two
variables can unify with each other, in which case they become the same variable (just
as in Prolog).

3. If both values are feature structures, they unify by applying this process recursively.

Thus the two feature structures[
a : b
c : d

] [
c : d
e : f

]

unify giving:

a : b
c : d
ite : f

Likewise, [a : X] and [a : b] unify, instantiating X to the value b; and the structures
[
a : X
b : c

] [
a : c
b : Y

]

unify by instantiating both X and Y to c.
As in Prolog, unification is not always possible. Specifically, if A and B have different

(non–unifiable) values for some feature, unification fails. A grammar rule requiring A to
unify with B cannot apply if A and B are not unifiable.

Unification–based grammars rely on failure of unification to rule out ungrammatical
sentences. Consider, for example, why our sample grammar generates It scares them but not
Them scare it. In Them scare it, rule 8 specifies that the pronoun them must have case : acc,
but rule 1 specifies case : nom on the NP node above it, and rule 5 specifies that the case of
the NP and of the pronoun is the same. Because of the conflict, the necessary unifications
are not possible and the ungrammatical sentence is not generated or parsed.

2.6 Declarativeness

Unification–based grammars are declarative, not procedural. That is, they are statements of
well–formedness conditions, not procedures for generating or parsing sentences. That is why,
for example, sentences generated by our sample grammar can be parsed either bottom–up
or top–down.

This declarativeness comes from the fact that unification is an order–independent oper-
ation. The unifier of A, B, and C is the same regardless of the order in which the three
structures are combined. This is true of both graph unification and Prolog term unification.

The declarative nature of UBGs is subject to two caveats. First, although unification is
order–independent, particular parsing algorithms are not. Recall that grammar rules of the
form

9

A → A B

cannot be parsed top–down, because they lead to infinite loops (“To parse an A, parse an A
and then...”). Now consider a rule of the form

A[
f : X

] → A[
f : X

] B

If X and Y have different values, then top–down parsing works fine; if either X or Y does
not have a value at the time the rule is invoked, top–down parsing will lead to a loop. This
shows that one cannot simply give an arbitrary UBG to an arbitrary parser and expect useful
results; the order of instantiation must be kept in mind.

Second, many common Prolog operations are not order–independent, and this must be
recognized in any implementation that allows Prolog goals to be inserted into grammar
rules. Obviously, the cut (!) interferes with order–independence by blocking alternatives
that would otherwise succeed. More commonplace predicates such as write, is, and == lack
order–independence because they behave differently depending on whether their arguments
are instantiated at the time of execution. Colmerauer’s Prolog II (Giannesini et al. 1986)
avoids some of these difficulties by allowing the programmer to postpone tests until a variable
becomes instantiated, whenever that may be.

2.7 Building structures and moving data

Declarative unification–based rules do more than just pass information up and down the
tree. They can build structure as they go. For example, the rule

V P[
sem :

[
pred : X
arg : Y

]] → V[
sem : X

] NP[
sem : Y

]

builds a semantic representation on the VP node from those of the V and NP nodes.
Unification can pass information around in directions other than along the lines of the

tree diagram. This is done by splitting a feature into two sub–features, one for input and
the other for output. The inputs and outputs can then be strung together in any manner.
Consider for example the rule:

S[
sem :

[
in : X1
out : X3

]] → NP[
sem :

[
in : X1
out : X2

]] V P[
sem :

[
in : X2
out : X3

]]

This rule assumes that sem of the S has some initial value (perhaps an empty list) which is
passed into X1 from outside. X1 is then passed to the NP, which modifies it in some way,
giving X2, which is passed to the VP for further modification. The output of the VP is X3,
which becomes the output of the S.

Such a rule is still declarative and can work either forward or backward; that is, parsing
can still take place top–down or bottom–up. Further, any node in the tree can communicate
with any other node via a string of input and output features, some of which simply pass

10

information along unchanged. The example in section 4.2 below uses input and output
features to undo unbounded movements of words. Johnson and Klein (1985, 1986) use in
and out features to perform complex manipulations of semantic structure; see section 4.3 for
a GULP reconstruction of part of one of their programs.

3 The GULP translator

3.1 Feature structures in GULP

The key idea of GULP is that feature structures can be included in Prolog programs as
ordinary data items. For instance, the feature structure
[
a : b
c : d

]

is written:

a:b..c:d

and GULP translates a:b..c:d into an internal representation (called a value list) in
which the a position is occupied by b, the c position is occupied by d, and all other positions,
if any, are uninstantiated.

This is analogous to the way ordinary Prolog translates strings such as "abc" into lists
of ASCII codes.The GULP programmer always uses feature structure notation and never
deals directly with value lists. Feature structures are order–independent; the translations of
a:b..c:d and of c:d..a:b are the same.

Nesting and paths are permitted. Thus, the structure

a : b

c :

[
d : e
f : g

]

is written a:b..c:(d:e..f:g). The same structure can be written as

a : b
c : d : e
c : f : g

or, in GULP notation, a:b..c:d:e..c:f:g.
GULP feature structures are data items — complex terms — not statements or opera-

tions. They are most commonly used as arguments of DCG rules. Thus, the rule

S[
person : X
number : Y

] → NP[
person : X
number : Y

] V P[
person : X
number : Y

]

can be written in DCG notation, using GULP, as:

11

s(person:X..number:Y) -->

np(person:X..number:Y),

vp(person:X..number:Y).

GULP feature structures can also be processed by ordinary Prolog predicates. For example,
the predicate

nonplural(number:X) :- nonvar(X), X \= plural.

succeeds if and only if its argument is a feature structure whose number feature is instantiated
to some value other than plural.

Any feature structure unifies with any other feature structure unless prevented by con-
flicting values. Thus, the internal representations of a:b..c:d and c:d..e:f are unifiable,
giving a:b..c:d..e:f. But a:b does not unify with a:d because b and d do not unify with
each other.

3.2 GULP syntax

Formally, GULP adds to Prolog the operators ‘:’ and ‘..’ and a number of built–in pred-
icates. The operator ‘:’ joins a feature to its value, which itself can be another feature
structure. Thus in c:d:e, the value of c is d:e. A feature–value pair is the simplest kind of
feature structure.

The operator ‘..’ combines feature–value pairs to build more complex feature structures.
This is done by simply unifying them. For example, the internal representation of a:b..c:d
is built by unifying the internal representations of a:b and c:d.

This fact can be exploited to write “improperly nested” feature structures. For example,

a:b..c:X..c:d:Y..Z

denotes a feature structure in which:

• the value of a is b,

• the value of c unifies with X,

• the value of c also unifies with d : Y , and

• the whole structure unifies with Z.

Both operators, ‘:’ and ‘..’, are right–associative; that is, a:b:c = a:(b:c). For compati-
bility with GULP 1.0 and 1.1, ‘..’ can be written ‘::’.

3.3 Automatic translation

GULP feature structures occurring in Prolog programs are automatically translated to their
internal representations when the program is consulted or compiled. They are translated
back into GULP notation when output by print and when displayed by the debugger. Thus,

12

to a considerable extent, translation of feature structures into value lists is transparent to
the GULP user.

Automatic translation is a new feature of GULP 3. Note that you cannot use feature
structure notation in queries because queries are not translated.2

3.4 The GULP environment

GULP is an ordinary Prolog environment with some built–in predicates added, and with
modifications to the behavior of consult (and all other predicates that load or compile
programs), print, and the debugger.

All programs are run through the GULP translator when they are loaded; thus, all
feature structures get translated into their internal representation (value lists). Although
not required, it is desirable, for efficiency reasons, to begin the program with a declaration
of the form

g_features([gender,number,case,person,tense]).

declaring all feature names before they are used. Further, parsing is more efficient if the
morphosyntactic features (case, number, person, etc.) precede features that are purely se-
mantic.

The GULP built–in predicate g_translate/2 interconverts feature structures and their
internal representations. This makes it possible to process, at runtime, feature structures in
GULP notation rather than translated form. For instance, if X is the internal representation
of a feature structure, then g_translate(Y,X), write(Y) will display it in GULP notation.
In GULP 3, print(Y) will of course do the same thing more conveniently.

The predicate display_feature_structure/1 outputs a feature structure, not in GULP
notation, but in a convenient tabular format, thus:

syn: case: acc

gender: masc

sem: pred: MAN

countable: yes

animate: yes

This is similar to traditional feature structure notation, but without brackets.
The other built–in predicates provided by the GULP system are:

• g_display/1, which takes a feature structure (in internal form) and displays it in an
indented tabular format;

• display_feature_structure/1, equivalent to g_display/1;

• g_fs/1, which succeeds if its argument is a feature structure (in external form, i.e., a
structure held together by colons and double dots);

• g_not_fs/1, the opposite of g_fs;

2A Prolog top level with automatic translation of input and output is being contemplated.

13

• g_vl/1, which succeeds if its argument is a value list (a feature structure in internal
form);

• g_printlength(Atom,N), which instantiates N to the length of the atom;

• writeln(Arg), which outputs Arg, translating all value lists into external form, and
then starting a new line (if Arg is a list, each of its elements is output on a fresh line);

• append/3 and member/2 with their usual meanings;

• remove_duplicates/2, which takes a list and produces, from it, a list with no duplicate
members;

• call_if_possible(Goal), which attempts to execute the goal, but fails quietly (with-
out raising an error condition) if there are no clauses for it;

• g_herald/0, which writes out an announcement of the version of GULP being used.

3.5 Internal representation

The internal representation of feature structures has changed considerably since GULP ver-
sion 2. In GULP 2, a value list was a list–like structure. In GULP 3, value lists are structures
with a fixed number of arguments (although they are still called value lists in the documen-
tation).

The nearest Prolog equivalent to a feature structure is a complex term with one position
reserved for the value of every feature. Thus

number : plural
person : third
gender : fem

could be represented as g_(plural,third,fem) or the like. It is necessary to decide in
advance which argument position corresponds to each feature.

A feature structure that does not use all of the available features is equivalent to a term
with anonymous variables; thus [person:third] would be represented as g_(_,third,_).

Structures of this type simulate graph unification in the desired way. They can be recur-
sively embedded. Further, structures built by instantiating Prolog variables are inherently
re–entrant in the sense of Shieber (1986), since an instantiated Prolog variable is actually
a pointer to the memory representation of its value. Most importantly, Schöter (1993) has
shown that this is the most efficient structure for the purpose.

However, such a representation assumes that the entire list of features is known before
any translation is done — an assumption that may not hold up. GULP therefore leaves
room for additional features that were not declared in g_features. The actual structure of
a value list is g_(_,F1,F2,F3,F4,F5,F6) with the first argument left open (uninstantiated).
It provides a place to put additional features that were not declared in g_features, by
expanding the uninstantiated first element from _ to [F7|_], then [F7|[F8|_]] and so on,

14

by further instantiating the uninstantiated tail. Thus, positions for more features can be
created at any time without disrupting the positions already created.

One more refinement (absent before GULP version 2.0) is needed. We want to be able
to translate value lists back into feature structure notation. For this purpose we must
distinguish features that are unmentioned from features that are merely uninstantiated.
That is, we do not want tense:X to turn into an empty feature structure just because X is
uninstantiated. It may be useful to know, during program testing, that X has unified with
some other variable even if it has not acquired a value. Thus, we want to record, somehow,
that the variable X was mentioned in the original feature structure whereas the values of
other features (person, number, etc.) were not.

Accordingly, g_/1 (distinct from g_/2) is used to mark all features that were mentioned
in the original structure. If person is second in the canonical order, and tense is fifth in the
canonical order (as before), then

tense:present..person:X => g_(_,g_(X),_,_,g_(present))

And this is the representation actually used by GULP. Note that the use ofg_/1 does not
interfere with unification, because g_(present) will unify both with g_(Y) (an explicitly
mentioned variable) and with an empty position.

3.6 How translation is done

In both LPA Prolog and Quintus Prolog, the program loader (consulter) calls term_expansion/2
to preprocess every term that it reads. If term_expansion succeeds, the Prolog system uses
its result, rather than the original term.

Accordingly, in GULP, term_expansion runs every term through the GULP translator
(g_translate). Also, GULP contains its own DCG rule expander (slightly modified from
one distributed by R. A. O’Keefe), for two reasons: by using term_expansion we bypass
the built–in Quintus or LPA DCG expander, and by using our own, we ensure that the
translations are the same in all versions of Prolog to which GULP is ported.

To make translation possible, GULP maintains a stored set of forward translation schemas,
plus one backward schema. For example, a program that uses the features a, b, and c (de-
clared in that order) will result in the creation of the schemas:

g_forward_schema(a,X,g_(_,g_(X),_,_)).

g_forward_schema(b,X,g_(_,_,g_(X),_)).

g_forward_schema(c,X,g_(_,_,_,g_(X))).

g_backward_schema(a:X..b:Y..c:Z,g_(_,X,Y,Z)).

Each forward schema contains a feature name, a variable for the feature value, and the
minimal corresponding value list. To translate the feature structure a:xx..b:yy..c:zz,
GULP will mark each of the feature values with g_(), and then call, in succession,

g_forward_schema(a,g_(xx), ...),

g_forward_schema(b,g_(yy), ...),

g_forward_schema(c,g_(zz), ...) ...

15

and unify the resulting value lists. The result will be the same regardless of the order in
which the calls are made. To translate a complex Prolog term, GULP first converts it into a
list using ‘=..’, then recursively translates all the elements of the list except the first, then
converts the result back into a term.

Backward translation is easier; GULP simply unifies the value list with the second argu-
ment of g_backward_schema, and the first argument immediately yields a rough translation.
It is rough in two ways: it mentions all the features in the grammar, and it contains g_(...)
marking all the feature values that were mentioned in the original feature structure. The
finished translation is obtained by discarding all features whose values are not marked by
g_(...), and removing the g_(...) from values that contain it.

The translation schemas are built automatically. Whenever a new feature is encountered,
a forward schema is built for it, and the pre–existing backward schema, if any, is replaced
by a new one. A g_features declaration causes the immediate generation of schemas for all
the features in it, in the order given. In addition, GULP maintains a current g_features

clause at all times that lists all the features actually encountered, whether or not they were
originally declared.

4 GULP in practical use

4.1 A simple definite clause grammar

Figure 3 shows a simple unification–based grammar implemented with the definite clause
grammar (DCG) parser that is built into Prolog. Each nonterminal symbol has a GULP
feature structure as its only argument.

Parsing is done top–down. The output of the program reflects the feature structures
built during parsing. For example:

?- test1.

[max,sees,bill] (String being parsed)

sem: pred: SEES (Displayed feature structure)

arg1: BILL

arg2: MAX

Figure 4 shows the same grammar written in a more PATR–like style. Instead of using
feature structures in argument positions, this program uses variables for arguments, then
unifies each variable with appropriate feature structures as a separate operation. This is
slightly less efficient but can be easier to read, particularly when the unifications to be
performed are complex.

In this program, the features of np and vp are called NPfeatures and VPfeatures re-
spectively. More commonly, the features of np, vp, and so on are in variables called NP, VP,
and the like. Be careful not to confuse upper– and lower–case symbols.

The rules in Figure 4 could equally well have been written with the unifications before
the constituents to be parsed. That is, we can write either

s(Sfeatures) --> np(NPfeatures), vp(VPfeatures),

{ Sfeatures = ... }.

16

% A grammar in DCG notation, with GULP feature structures.

s(sem: (pred:X .. arg1:Y .. arg2:Z)) --> np(sem:Y .. case:nom),
vp(sem: (pred:X .. arg2:Z)).

vp(sem: (pred:X1 .. arg2:Y1)) --> v(sem:X1),
np(sem:Y1).

v(sem:’SEES’) --> [sees].

np(sem:’MAX’) --> [max].

np(sem:’BILL’) --> [bill].

np(sem:’ME’ .. case:acc) --> [me].

% Procedure to parse a sentence and display its features

try(String) :- writeln([String]),
phrase(s(Features),String),
display_feature_structure(Features).

% Example sentences

test1 :- try([max,sees,bill]).
test2 :- try([max,sees,me]).
test3 :- try([me,sees,max]). /* should fail */

Figure 3: Example of a grammar in GULP notation.

17

% Same as first GULP example, but written in a much more PATR-like style,
% treating the unifications as separate operations.

s(Sfeatures) --> np(NPfeatures), vp(VPfeatures),
{ Sfeatures = sem: (pred:X .. arg1:Y .. arg2:Z),
NPfeatures = sem:Y .. case:nom,
VPfeatures = sem: (pred:X .. arg2:Z) }.

vp(VPfeatures) --> v(Vfeatures), np(NPfeatures),
{ VPfeatures = sem: (pred:X1 .. arg2:Y1),
Vfeatures = sem:X1,
NPfeatures = sem:Y1 }.

v(Features) --> [sees], { Features = sem:’SEES’ }.

np(Features) --> [max], { Features = sem:’MAX’ }.

np(Features) --> [bill], { Features = sem:’BILL’ }.

np(Features) --> [me], { Features = sem:’ME’ .. case:acc }.

% Procedure to parse a sentence and display its features

try(String) :- writeln([String]),
s(Features,String,[]),
display_feature_structure(Features).

% Example sentences

test1 :- try([max,sees,bill]).
test2 :- try([max,sees,me]).
test3 :- try([me,sees,max]). /* should fail */

Figure 4: The same grammar in more PATR–like notation.

18

or

s(Sfeatures) --> { Sfeatures = ... },

np(NPfeatures), vp(VPfeatures).

Because unification is order–independent, the choice affects efficiency but not correctness.
The only exception is that some rules can loop when written one way but not the other.
Thus

s(S1) --> s(S2), { S1 = x:a, S2 = x:b }.

loops, whereas

s(S1) --> { S1 = x:a, S2 = x:b }, s(S2).

does not, because in the latter case S2 is instantiated to a value that must be distinct from
S1 before s(S2) is parsed.

4.2 A hold mechanism for unbounded movements

Unlike a phrase–structure grammar, a unification–based grammar can handle unbounded
movements. That is, it can parse sentences in which some element appears to have been
moved from its normal position across an arbitrary amount of structure.

Such a movement occurs in English questions. The question–word (who, what, or the
like) always appears at the beginning of the sentence. Within the sentence, one of the places
where a noun phrase could have appeared is empty:

The boy said the dog chased the cat.
What did the boy say Ã chased the cat? (The dog.)
What did the boy say the dog chased Ã ? (The cat.)

Ordinary phrase–structure rules cannot express the fact that only one noun phrase is missing.
Constituents introduced by phrase–structure rules are either optional or obligatory. If noun
phrases are obligatory, they can’t be missing at all, and if they are optional, any number of
them can be missing at the same time.

Chomsky (1957) analyzed such sentences by generating what in the position of the missing
noun phrase, then moving it to the beginning of the sentence by means of a transformation.
This is the generally accepted analysis.

To parse such sentences, one must undo the movement. This is achieved through a hold
stack. On encountering what, the parser does not parse it, but rather puts it on the stack
and carries it along until it is needed. Later, when a noun phrase is expected but not found,
the parser can pop what off the stack and use it.

The hold stack is a list to which elements can be added at the beginning. Initially, its
value is [] (the empty list). To parse a sentence, the parser must:

1. Pass the hold stack to the NP, which may add or remove items.

2. Pass the possibly modified stack to the VP, which may modify it further.

19

In traditional notation, the rule we need is:

S[
hold :

[
in : H1
out : H3

]] → NP[
hold :

[
in : H1
out : H2

]] V P[
hold :

[
in : H2
out : H3

]]

Here hold : in is the stack before parsing a given constituent, and hold : out is the stack
after parsing that same constituent. Notice that three different states of the stack — H1, H2,
and H3 — are allowed for.

Figure 5 shows a complete grammar built with rules of this type. There are two rules
expanding S. One is the one above (S → NP VP). The other one accepts what did at the
beginning of the sentence, places what on the stack, and proceeds to parse an NP and VP.
Somewhere in the NP or VP — or in a subordinate S embedded therein — the parser will
use the rule

np(NP) --> [], { NP = hold: (in:[what|H1]..out:H1) }.

thereby removing what from the stack.

4.3 Building discourse representation structures

Figure 6 shows a GULP reimplementation of a program by Johnson and Klein (1986) that
makes extensive use of in and out features to pass information around the parse tree. John-
son and Klein’s key insight is that the logical structure of a sentence is largely specified by
the determiners. For instance, A man saw a donkey expresses a simple proposition with
universally quantified variables, but Every man saw a donkey expresses an “if–then” rela-
tionship (If X is a man then X saw a donkey). On the syntactic level, every modifies man,
but semantically, every gives the entire sentence a different structure.

Accordingly, Johnson and Klein construct their grammar so that almost all the semantic
structure is built by the determiners. Each determiner must receive, from elsewhere in the
sentence, semantic representations for its scope and its restrictor. The scope of a determiner
is the main predicate of the clause, and the restrictor is an additional condition imposed
by the NP to which the determiner belongs. For instance, in Every man saw a donkey, the
determiner every has scope saw a donkey and restrictor man.

Figure 6 is a reimplementation, in GULP, of a sample program Johnson and Klein wrote in
PrAtt (a different extension of Prolog). The semantic representations built by this program
are those used in Discourse Representation Theory (Kamp, 1981; Spencer–Smith, 1987).
The meaning of a sentence or discourse is represented by a discourse representation structure
(DRS) such as:

[1,2,man(1),donkey(2),saw(1,2)]

Here 1 and 2 stand for entities (people or things), and man(1), donkey(2), and saw(1,2) are
conditions that these entities must meet. The discourse is true if there are two entities such
that 1 is a man, 2 is a donkey, and 1 saw 2. The order of the list elements is insignificant,
and the program builds the list backward, with indices and conditions mixed together.

A DRS can contain other DRSes embedded in a variety of ways. In particular, one of
the conditions within a DRS can have the form

20

% S may or may not begin with ’what did’.
% In the latter case ’what’ is added to the stack
% before the NP and VP are parsed.

s(S) --> np(NP), vp(VP),
{ S = hold: (in:H1..out:H3),

NP = hold: (in:H1..out:H2),
VP = hold: (in:H2..out:H3) }.

s(S) --> [what,did], np(NP), vp(VP),
{ S = hold: (in:H1..out:H3),

NP = hold: (in:[what|H1]..out:H2),
VP = hold: (in:H2..out:H3) }.

% NP is parsed by either accepting det and n,
% leaving the hold stack unchanged, or else
% by extracting ’what’ from the stack without
% accepting anything from the input string.

np(NP) --> det, n, { NP = hold: (in:H..out:H) }.

np(NP) --> [], { NP = hold: (in:[what|H1]..out:H1) }.

% VP consists of V followed by NP or S.
% Both hold:in and hold:out are the same
% on the VP as on the S or NP, since the
% hold stack can only be altered while
% processing the S or NP, not the verb.

vp(VP) --> v, np(NP), { VP = hold:H,
NP = hold:H }.

vp(VP) --> v, s(S), { VP = hold:H,
S = hold:H }.

% Lexicon

det --> [the];[a];[an].
n --> [dog];[cat];[boy].
v --> [said];[say];[chase];[chased].

try(X) :- writeln([X]),
S = hold: (in:[]..out:[]),
phrase(s(S),X,[]).

test1 :- try([the,boy,said,the,dog,chased,the,cat]).
test2 :- try([what,did,the,boy,say,chased,the,cat]).
test3 :- try([what,did,the,boy,say,the,cat,chased]).
test4 :- try([what,did,the,boy,say,the,dog,chased,the,cat]).

/* test4 should fail */

Figure 5: Grammar with a holding stack.

21

% Discourse Representation Theory (adapted from Johnson & Klein 1986)

% unique_integer(N)
% instantiates N to a different integer each time called.

unique_integer(N) :-
retract(unique_aux(N)),
!,
NewN is N+1,
asserta(unique_aux(NewN)).

:- dynamic(unique_aux/1).
unique_aux(0).

% Nouns
% Each noun generates a unique index and inserts it, along with
% a condition, into the DRS that is passed to it.

n(N) --> [man],
{ unique_integer(C),

N = syn:index:C ..
sem: (in: [Current|Super] ..

out: [[C,man(C)|Current]|Super]) }.

n(N) --> [donkey],
{ unique_integer(C),

N = syn:index:C ..
sem: (in: [Current|Super] ..

out: [[C,donkey(C)|Current]|Super]) }.

% Verbs
% Each verb is linked to indices of its arguments through syntactic
% features. Using these indices, it adds appropriate predicate to semantics.

v(V) --> [saw],
{ V = syn: (arg1:Arg1 .. arg2:Arg2) ..

sem: (in: [Current|Super] ..
out: [[saw(Arg1,Arg2)|Current]|Super]) }.

Figure 6: Partial implementation of Discourse Representation Theory (continued on next
page).

22

% Determiners
% Determiners tie together the semantics of their scope and restrictor.
% The simplest determiner, ’a’, simply passes semantic material to its
% restrictor and then to its scope. A more complex determiner such as
% ’every’ passes an empty list to its scope and restrictor, collects whatever
% semantic material they add, and then arranges it into an if-then structure.

det(Det) --> [a],
{ Det = sem:res:in:A, Det = sem:in:A,

Det = sem:scope:in:B, Det = sem:res:out:B,
Det = sem:out:C, Det = sem:scope:out:C }.

det(Det) --> [every],
{ Det = sem:res:in:[[]|A], Det = sem:in:A,

Det = sem:scope:in:[[]|B], Det = sem:res:out:B,
Det = sem:scope:out:[Scope,Res|[Current|Super]],
Det = sem:out:[[Res>Scope|Current]|Super] }.

% Noun phrase
% Pass semantic material to determiner, which will specify logical structure.

np(NP) --> { NP=sem:A, Det=sem:A,
Det=sem:res:B, N=sem:B,
NP=syn:C, N=syn:C }, det(Det),n(N).

% Verb phrase
% Pass semantic material to the embedded NP (the direct object).

vp(VP) --> { VP = sem:A, NP = sem:A,
NP = sem:scope:B, V = sem:B,
VP = syn:arg2:C, NP = syn:index:C,
VP = syn:D, V = syn:D }, v(V), np(NP).

% Sentence
% Pass semantic material to the subject NP.
% Pass VP semantics to the subject NP as its scope.

s(S) --> { S = sem:A, NP = sem:A,
S = syn:B, VP = syn:B,
NP = sem:scope:C, VP = sem:C,
VP = syn:arg1:D, NP = syn:index:D }, np(NP), vp(VP).

% Procedure to parse and display a sentence

try(String) :- write(String),nl,
Features = sem:in:[[]], /* start w. empty structure */
phrase(s(Features),String),
Features = sem:out:SemOut, /* extract what was built */
display_feature_structure(SemOut).

% Example sentences
test1 :- try([a,man,saw,a,donkey]).
test2 :- try([a,donkey,saw,a,man]).
test3 :- try([every,man,saw,a,donkey]).
test4 :- try([every,man,saw,every,donkey]).

23

DRS1 > DRS2

which means: “This condition is satisfied if for each set of entities that satisfy DRS1, it is
also possible to satisfy DRS2.” For example:

[1,man(1), [2,donkey(2)] > [saw(1,2)]]

“There is an entity 1 such that 1 is a man, and for every entity 2 that is a donkey, 1 saw 2.”
That is, “Some man saw every donkey.” Again,

[[1,man(1)] > [2,donkey(2)]]

means “every man saw a donkey” — that is, “for every entity 1 such that 1 is a man, there
is an entity 2 which is a donkey.”

Parsing a sentence begins with the rule:

s(S) --> { S = sem:A, NP = sem:A,

S = syn:B, VP = syn:B,

NP = sem:scope:C, VP = sem:C,

VP = syn:arg1:D, NP = syn:index:D }, np(NP), vp(VP).

This rule stipulates the following things:

1. An S consists of an NP and a VP.

2. The semantic representation of the S is the same as that of the NP, i.e., is built by the
rules that parse the NP.

3. The syntactic feature structure (syn) of the S is that of the NP. Crucially, this contains
the indices of the subject (arg1) and object (arg2).

4. The scope of the NP (and hence of its determiner) is the semantic representation of
the VP.

5. The index of the verb’s subject (arg1) is that of the NP mentioned in this rule.

Other rules do comparable amounts of work, and space precludes explaining them in detail
here. (See Johnson and Klein 1985, 1986 for further explanation.) By unifying appropriate
in and out features, the rules perform a complex computation in an order–independent way.

4.4 Left–corner parsing

GULP is not tied to Prolog’s built–in DCG parser. It can be used with any other parser
implemented in Prolog. Figure 7 shows how GULP can be used with the BUP left–corner
parser developed by Matsumoto et al. (1986) (called a bottom–up parser in the literature
because its operation is partly bottom–up).

In bottom–up parsing, the typical question is not “How do I parse an NP?” but rather,
“Now that I’ve parsed an NP, what do I do with it?” BUP puts the Prolog search mechanism
to good use in answering questions like this. During a BUP parse, two kinds of goals occur.
A goal such as

24

% BUP in GULP:
% Left-corner parsing algorithm of Matsumoto et al. (1986).

% Goal-forming clause

goal(G,Gf,S1,S3) :-
word(W,Wf,S1,S2),
NewGoal =.. [W,G,Wf,Gf,S2,S3],
call(NewGoal).

% Terminal clauses for nonterminal symbols

s(s,F,F,X,X).
vp(vp,F,F,X,X).
np(np,F,F,X,X).

% Phrase-structure rules

% np vp --> s

np(G,NPf,Gf,S1,S3) :- goal(vp,VPf,S1,S2),
s(G,Sf,Gf,S2,S3),
NPf = sem:Y..case:nom,
VPf = sem: (pred:X..arg2:Z),
Sf = sem: (pred:X..arg1:Y..arg2:Z).

% v np --> vp

v(G,Vf,Gf,S1,S3) :- goal(np,NPf,S1,S2),
vp(G,VPf,Gf,S2,S3),
Vf = sem:X1,
NPf = sem:Y1..case:acc,
VPf = sem: (pred:X1..arg2:Y1).

% Terminal symbols

word(v,sem:’SEES’,[sees|X],X).
word(np,sem:’MAX’,[max|X],X).
word(np,sem:’BILL’,[bill|X],X).
word(np,sem:’ME’..case:acc,[me|X],X).

% Procedure to parse a sentence and display its features

try(String) :- writeln([String]),
goal(s,Features,String,[]),
display_feature_structure(Features).

% Example sentences
test1 :- try([max,sees,bill]).
test2 :- try([max,sees,me]).
test3 :- try([me,sees,max]). /* should fail */

Figure 7: Implementation of Matsumoto’s BUP.

25

?- np(s,NPf,Sf,[chased,the,cat],[]).

means: “An NP has just been accepted; its features are contained in NPf. This occurred
while looking for an S with features Sf. Immediately after parsing the NP, the input string
was [chased,the,cat]. After parsing the S, it will be [].” The other type of goal is

?- goal(vp,VPf,[chased,the,cat],[]).

This means, “Parse a VP with features VPf, starting with the input string [chased,the,cat]
and ending up with [].” This is like the DCG goal

?- vp(VPf,[chased,the,cat],[]).

except that the parsing is to be done bottom–up.
To see how these goals are constructed, imagine replacing the top–down parsing rule

s --> np, vp.

with the bottom–up rule

np, vp --> s.

This rule should be used when the parser is looking for a rule that will tell it how to use an
NP it has just found. So np(...) should be the head of the Prolog clause. Ignoring feature
unifications, the clause will be:

np(G,NPf,Gf,S1,S3) :- goal(vp,VPf,S1,S2),

s(G,Sf,Gf,S2,S3).

That is: “Having just found an NP with features NPf, parse a VP with features VPf. You
will then have completed an S, so look for a clause that tells you what to do with it.”

Here S1, S2, and S3 represent the input string initially, after parsing theVP, and after
completing the S. G is the higher constituent that was being sought when the NP was found,
and Gf contains its features. If, when the S is completed, it turns out that an S was being
sought (the usual case), then execution can finish with the terminal rule

s(s,F,F,X,X).

Otherwise another clause for s(...) must be searched for.
Much of the work of BUP is done by the goal–forming predicate goal, defined thus:

goal(G,Gf,S1,S3) :-

word(W,Wf,S1,S2),

NewGoal =.. [W,G,Wf,Gf,S2,S3],

call(NewGoal).

That is (ignoring features): “To parse a G in input string S1 leaving the remaining input
in S3, first accept a word, then construct a new goal depending on its category (W).” For
example, the query

26

?- goal(s,Sf,[the,dog,barked],S3).

will first call

?- word(W,Wf,[the,dog,barked],[dog,barked]).

thereby instantiating W to det and Wf to the word’s features, and then construct and call
the goal

?- det(s,Wf,Sf,[dog,barked],S3).

That is: “I’ve just completed a det and am trying to parse an s. What do I do next?” A
rule such as

det, n --> np

(or rather its BUP equivalent) can be invoked next, to accept another word (a noun) and
complete an NP.

5 Future Prospects

5.1 Possible improvements

One disadvantage of GULP is that every feature structure must contain a position for every
feature in the grammar. This makes feature structures larger and slower to process than
they need be. By design, unused features often fall in the uninstantiated tail of the value
list, and hence take up neither time nor space. But not all unused features have this good
fortune. In practice, almost every value list contains gaps, i.e., positions that will never be
instantiated, but must be passed over in every unification.

To reduce the number of gaps, GULP could be modified to distinguish different types of
value lists. The feature structure for a verb needs a feature for tense; the feature structure for
a noun does not. Value lists of different types would reserve the same positions for different
features, skipping features that would never be used. Some kind of type marker, such as a
unique functor, would be needed so that value lists of different types would not unify with
each other.

Types of feature structures could be distinguished by the programmer — e.g., by giving
alternative g_features declarations — or by modifying the GULP translator itself to look
for patterns in the use of features. Some grammatical formalisms, such as that of Pollard
and Sag (1994), explicitly specify types (sorts) for all feature structures.

5.2 Keyword parameters via GULP

Unification–based grammar is not the only use for GULP. Feature structures are a good
formalization of keyword–value argument lists.

Imagine a complicated graphics procedure that takes arguments indicating desired win-
dow size, maximum and minimum coordinates, and colors, all of which have default values.
In Pascal, the procedure can only be called with explicit values for all the parameters:

27

OpenGraphics(480,640,-240,240,-320,320,green,black);

There could, however, be a convention that 0 means ”take the default:”

OpenGraphics(0,0,0,0,0,0,red,blue);

Prolog can do slightly better by using uninstantiated arguments where defaults are wanted,
and thereby distinguishing “default” from “zero:”

?- open_graphics(_,_,_,_,_,_,red,blue).

In GULP, however, the argument of open_graphics can be a feature structure in which the
programmer mentions only the non–default items:

?- open_graphics(foreground:red..background:blue).

In this feature structure, the values for x_resolution, y_resolution, x_maximum, x_minimum,
y_maximum, and y_minimum (or whatever they are called) are left uninstantiated because they
are not mentioned. So in addition to facilitating the implementation of unification–based
grammars, GULP provides Prolog with a keyword argument system.

6 References

Barton, G. Edward; Berwick, Robert C.; and Ristad, Eric Sven. 1987. Computational
complexity and natural language. Cambridge, Massachusetts: MIT Press.

Bouma, Gosse; König, Esther; and Uszkoreit, Hans. 1988. A flexible graph–unification for-
malism and its application to natural–language processing. IBM Journal of Research
and Development 32:170–184.

Bresnan, Joan, ed. 1982. The mental representation of grammatical relations. Cambridge,
Massachusetts: MIT Press.

Chomsky, Noam. 1957. Syntactic structures. (Janua linguarum, 4.) The Hague: Mouton.

Chomsky, Noam. 1965. Aspects of the theory of syntax. Cambridge, Massachusetts: MIT
Press.

Covington, Michael A. 1987. GULP 1.1: an extension of Prolog for unification–based gram-
mar. ACMC Research Report 01–0021. Advanced Computational Methods Center,
University of Georgia.

Covington, Michael A. 1987. GULP 2.0: an extension of Prolog for unification–based gram-
mar. Research Report AI–1989–01, Artificial Intelligence Programs, University of
Georgia.

Covington, Michael A. 1994. Natural language processing for Prolog programmers. Engle-
wood Cliffs, N.J.: Prentice–Hall.

Covington, Michael A.; Nute, Donald; and Vellino, André. 1988. Prolog programming in
depth. Glenview, Ill.: Scott, Foresman.

28

Gazdar, Gerald; Klein, Ewan; Pullum, Geoffrey; and Sag, Ivan. 1985. Generalized phrase
structure grammar. Cambridge, Massachusetts: Harvard University Press.

Giannesini, Francis; Kanoui, Henry; Pasero, Robert; and van Caneghem, Michel. 1986.
Prolog. Wokingham, England: Addison–Wesley.

Johnson, Mark, and Klein, Ewan. 1985. A declarative formulation of Discourse Representa-
tion Theory. Paper presented at the summer meeting of the Association for Symbolic
Logic, July 15–20, 1985, Stanford University.

Johnson, Mark, and Klein, Ewan. 1986. Discourse, anaphora, and parsing. Report No.
CSLI–86–63. Center for the Study of Language and Information, Stanford University.
Also in Proceedings of Coling86 669–675.

Joshi, Aravind K. 1986. The convergence of mildly context–sensitive grammar formalisms.
Draft distributed at Stanford University, 1987.

Kamp, Hans. 1981. A theory of truth and semantic representation. Reprinted in Groe-
nendijk, J.; Janssen, T. M. V.; and Stokhof, M., eds., Truth, interpretation, and
information. Dordrecht: Foris, 1984.

Kaplan, Ronald M., and Bresnan, Joan. 1982. Lexical–Functional Grammar: a formal
system for grammatical representation. Bresnan 1982:173–281.

Karttunen, Lauri. 1986a. D–PATR: a development environment for unification–based gram-
mars. Report No. CSLI–86–61. Center for the Study of Language and Information,
Stanford University. Shortened version in Proceedings of Coling86 74–80.

Karttunen, Lauri. 1986b. Features and values. Shieber et al. 1986 (vol. 1), 17–36. Also in
Proceedings of Coling84 28–33.

Matsumoto, Yuji; Tanaka, Hozumi; and Kiyono, Masaki. 1986. BUP: a bottom–up parsing
system for natural languages. Michel van Caneghem and David Warren, eds., Logic
programming and its applications 262–275. Norwood, N.J.: Ablex.

Pollard, Carl, and Sag, Ivan A. 1987. Information–based syntax and semantics, vol. 1:
Fundamentals. (CSLI Lecture Notes, 13.) Center for the Study of Language and
Information, Stanford University.

Pollard, Carl, and Sag, Ivan A. 1994. Head–driven phrase–structure grammar. Chicago:
University of Chicago Press.

Schöter, Andreas (1993) Compiling feature structures into terms: an empirical study in
Prolog. Thesis, M.Sc., Centre for Cognitive Science, University of Edinburgh.

Sedogbo, Celestin. 1986. AVAG: an attribute/value grammar tool. FNS–Bericht 86–10.
Seminar für natürlich–sprachliche Systeme, Universität Tübingen.

Shieber, Stuart M. 1986a. An introduction to unification–based approaches to grammar.
(CSLI Lecture Notes, 4.) Center for the Study of Language and Information, Stanford
University.

Shieber, Stuart M. 1986b. The design of a computer language for linguistic information.
Shieber et al. (eds.) 1986 (vol. 1) 4–26.

29

Shieber, Stuart M.; Pereira, Fernando C. N.; Karttunen, Lauri; and Kay, Martin, eds. A
compilation of papers on unification–based grammar formalisms. 2 vols. bound as
one. Report No. CSLI–86–48. Center for the Study of Language and Information,
Stanford University.

Spencer–Smith, Richard. 1987. Semantics and discourse representation. Mind and Language
2.1: 1–26.

30

	ai199406-cover-page
	ai199406-note
	gulp

