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Abstract

Multiple Fault Diagnosis �MFD� is the process of determining the correct fault or faults
that are responsible for a given set of symptoms� MFD problems are generally characterized by
problem�spaces containing many local minima and maxima� We show that when using Genetic
Algorithms to solve these kinds of problems� best results can be achieved with higher than
�normal	 mutation rates� Schemata theory is then used to analyze this data and show why this
genetic operator would give these results�

� Introduction

Multiple Fault Diagnosis �MFD� is the process of identifying one or more problems or faults which
are most likely responsible for a given set of symptoms
 In this paper we examine the results of
using a simple Genetic Algorithm �sGA� for evaluating the likelihood that a speci�c set of disorders
is the cause of a particular set of symptoms
 Optimal results were obtained using an atypically high
mutation rate
 We will examine the sGA parameters which produced these results� and attempt
to explain these atypical con�gurations in terms of schema theory


The �tness function for determining the suitability of a diagnosis is the Modi�ed Relative
Likelihood function taken from �P����
 A rigorous mathematical treatment of its theoretical basis
is given in �PR��a� and �P����
 It is an e�cient algorithm that requires relatively small amounts of
data to operate� and is �exible enough to be used in real�world applications under many di�erent
computational methods �PR��a� PR��b� PR��� P���� P��	�


The MFD problem solved consisted of ten possible symptoms and �fteen possible disorders

This creates a search space of 	�� possible diagnoses for any one of the possible ��	� symptom
sets
 The symptom set with no symptoms was not considered
 An exhaustive search for the best
diagnosis is impractical in a real time situation� any increase in possible disorders signi�cantly
enlarges the search space to the point of making an exhaustive search infeasible


� The sGA

The simple Genetic Algorithm �sGA� used was based loosely on �Gol���
 A C port of the sGA
by R
 E
 Smith and Je� Earickson �available by anonymous ftp from ftp�aic�nrl�navy�mil� was

�Special thanks to Dr� W� D� Potter for his analytical and editorial advice�

�



modi�ed for the MFD problem
 Any optimizations made were to increase execution speed and did
not a�ect the genetic operators of the sGA


��� Relative Likelihood and the Objective Function

The original �relative likelihood� function comes from �PR��a�
 Given a �nite set of disorders D
and a �nite set of symptoms or manifestations M � a tendency matrix C �a subset of D �M� is
created
 Each member cij of C de�nes the probability P �mi � dj j dj�� given dj � the probability
that dj causes mi
 Note that this is not equivalent to the conditional probability P �mi j dj�
 The
probability with which dj causes mi remains constant irrespective of the frequency of occurrence
of either dj or mi �PR��a� P����
 We also create the vector pi� the probability that a common
disorder causes the symptoms
 This information is used to determine the likelihood that a diagnosis
DI su�ciently explains observed symptoms M�


The values in the tendency matrix may come from historical trends� the analysis of relationships
between faults and symptoms� or research data
 For instance� in �P��	� a modi�cation of the relative
likelihood scheme was used in the Communication Alarm Processor expert system to aid system
operators in diagnosing communication network problems in a near real�time capacity
 This system
was developed at Oak Ridge National Laboratory for the Bonneville Power Administration� and
monitored �� components and �� alarm groups �for a solution space of 	���
 Values in this tendency
matrix were taken from �fault trees�� structures which showed the relationships among major and
minor alarms� and their associated problems


Once the tendency matrix is established� the relative likelihood� L�DI�M��� is then the product
of three terms� the likelihood that a diagnosis covers less than the given symptom set �L��� the
likelihood that a given diagnosis covers more symptoms than the set given �L��� and the likelihood
that a common disorder is the cause of the symptoms �L��
 The product of these three likelihoods
is the �tness of a given diagnosis
 These terms are given by�
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It is clear that L� and L� will be forced to zero in the cases of incomplete coverage and super�
coverage �cij � � and cij � � respectively�
 This is unsatisfactory for a �tness function which must
be able to categorize DI based on its relative �goodness�


In �P���� a change to the relative likelihood function� the modi�ed relative likelihood� �MRL��
is made that resolves this problem
 When calculating L�� all cij � � are set to a number close to�
but not equal to �
 Likewise� with L�� all cij � � are set to a value near� but not equal to �
 This
allows the sGA to rank and compare the relative �tness of diagnoses whose values might otherwise
be forced to � using the unmodi�ed relative likelihood function


	



��� Genetic Operators

Genetic Algorithms use the Darwinian principles of natural selection to guide a heuristic search
across a problem space
 A randomly generated �population� of individuals� each of whom represent
a possible solution to the problem at hand� are manipulated using genetic operators according to
problem speci�c probabilities
 After these operations� individuals in the population are evaluated by
a �tness function and assigned a value that determines their �goodness� or proximity to a solution

In this manner� population number of distinct points in the problem space can be searched at once


The three basic genetic operators� selection� crossover� and mutation� as described in �Gol���
were used in this experiment
 Since our purpose was to explore optimal sGA parameter settings
and not optimize the sGA itself� we did not incorporate many of the common genetic operator
improvements such as elitism or hybrid schemes �P��	� Gol���


Selection is the process by which an individual in the population is allowed to �mate� or ex�
change genetic data with another member of the population
 Selection probabilities are generated
according to the �tness of the current population
 Those individuals with higher �tness will gen�
erate more o�spring in the next generation because their �tness value apportions them a higher
probability of being selected for reproduction


The original sGA used an ine�cient summation selection procedure
 First� a selection prob�
ability was calculated� then a linear search consisting of a summation of individual �tnesses was
performed until the selection probability was reached
 To expedite execution speed� this linear
summation was changed to a modi�ed binary search
 Each individual carried with it the sum of
the �tness of the population up to that point
 A binary search could then be implemented based on
that sum
 The search was modi�ed so that each pivot in the search had to check a range of values
to decide which direction to search next
 If the search goal was between the current sum of �tness
and the sum of �tness minus the current individual�s �tness� then that individual was chosen


Crossover is the actual process by which mated individuals exchange genetic material
 One or
more crossover points are selected on each parent� and the children become the result of swapping
the genetic materials between these crossover points
 In this experiment� crossover was changed
to a two point crossover from the simple crossover in the original sGA
 This represents the only
modi�cation that could be considered an optimization of the actual genetic operators
 Each diag�
nosis and symptom set was represented as an unsigned bit string
 Each individual bit position
set to one represented the presence of that manifestation or disorder in the respective symptom
or diagnosis set
 For instance� symptom set M�

��� � fm��m��m��m��m��m��m��m�	g would be
represented by the binary string ����������
 During crossover� two loci on the chromosome were
chosen at random
 Since the diagnoses were represented as bit strings� a function was implemented
that would exchange bits between two strings from a start to a �nish position
 If the �rst crossover
point occurred before the second� the bits in between these points were swapped
 Otherwise� the
bits from those points to their respective ends were swapped


The �nal genetic operator� mutation� ensures a more thorough coverage of the problem space

Mutation stochastically changes the value of a particular locus on an individual
 This �error�
can aid in preventing the population from stagnating or converging on local maxima or minima
by forcing an individual into a previously unexplored area of the search space
 Mutation is not
generally considered as important as crossover and selection in the genetic algorithm heuristic
�Gol��� DeJ���� and for many problems a low mutation rate �� ��population size� produces best
results
 However there seems to be a growing body of work that would indicate that for certain
classes of problems� mutation plays a signi�cantly more important role �BG�	� FA��� S����
 Our
results bear out these indications
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� Run Data

The focus of this experiment was to determine the parameter settings which gave the highest number
of best �t diagnoses �as determined by an exhaustive search� over the range of ��	� symptom sets

The best �t genotype for each symptom set was written to a �le at the end of every run
 Each run
was stopped after a best solution was reached or until the maximum number of generations was
complete


A population size of 	�� was used on all runs
 To eliminate the possibility of a particular run
getting a randomly better initial population� all populations were started with the same initial
population
 Each symptom set was run for 	� generations
 	 suites of runs were performed in
which only one parameter� either crossover or mutation probability� was varied for each set of ��	�
symptoms
 The tendency matrix was half�dense �ratio of zero entries to non�zero entries� and
randomly generated


In the �rst suite of 	�� runs� crossover probabilities ranged from �
�� to �
��� in increments of
�
��
 Mutation probabilities ranged from �
��� to �
� in increments of �
�����
 From the results of
previous experiments� this was the range where the best results were expected
 In the second suite�
crossover probabilities were in two ranges
 The �rst set of �� runs used a �ner grained mutation
increment of �
����� with crossover varying from �
�� to �
� and mutation ranging across �
���� to
�
���
 The purpose of this range was to test the e�ectiveness of extremely low mutation parameters
on theMFD problem
 In the second set of ��� runs� the crossover range was from �
�� to �
�� with
mutation ranging from �
��� to �
�� in increments of �
�����
 This range was included to test the
�generally accepted� parameters� and to test the e�ect of both high mutation and crossover rates


All runs were performed on �ve Sun SPARC workstations
 Average run time was between 	�
to �� minutes per trial of ��	� symptom sets
 For comparison� the exhaustive search took 	� hours
and �� minutes to complete a full trial


� Results

Results for suite one are shown in Figure �
 As expected� a large portion of this run� �� out of 	��
�approximately 	��� produced perfect or near perfect results ���	� to ��	� correct out of ��	��

The best result� ��	� out of ��	�� used a crossover rate of �
	� and a mutation rate of �
���
 The
worst result� using a crossover of �
�� and mutation of �
���� got ��� correct


Results for set one of suite two �Figure 	� were considerably lower
 None of the �� runs reached
more than marginally above ��� accuracy� or ��� out of ��	� correct
 This is not surprising
since this range covered mutation rates even lower than the recommended settings that would be
obtained using a rate inversely proportional to the population�Gol���
 Mutation rates were also
signi�cantly lower than those that had previously shown good results
 The second set of suite two
�Figure �� showed good results� however not in the ranges that might be expected
 For instance
�Gol��� recommends a crossover rate of �
� with a mutation rate of �
��� for this type of problem

Though these parameters did not fall on the incremental boundaries used� a special run was made
using these settings
 This run achieved a success rate of only ��
��� or ��� out of ��	�
 Best
results in the range for the second set were ��		� achieved using crossover of �
�� with mutation at
�
���
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Figure �� Logarithmically scaled MFD search space

� Discussion

To understand these results it is necessary to look at the schemas which represent the best �t
diagnoses
 By comparing the e�ect of genetic operators on these schema with their e�ect on best
�t schema from functions that do bene�t from the �rule of thumb� parameters� we can draw
conclusions about how mutation and crossover settings should be modi�ed for a given search


��� MFD Search Space

By examining the search space for the MFD problem� we can see why higher mutation rates are
necessary to solve this problem quickly
 Figure � shows the values for the individuals immediately
surrounding the best �t diagnosis for symptom set M�


���� logarithmically scaled to show the whole
problem space


There is no gradient leading to the best diagnosis for crossover to exploit
 The binary rep�
resentation of the best diagnosis is ���������������� whereas the second and third best �t are
���������������� and ��������������� respectively


If we consider the schema as the minimum number of bits de�ning these strings as best �t� then
our de�ning length becomes ���
 These long schemata will either be quickly lost through crossover�

�There are �� bit positions that characterize the schema in this example� We strictly follow Goldberg�s de�nition
of de�ning length� ��H� � bj � bi � � where j � i� See �Gol	
� for details�

�



or� if they are even reasonably �t� cause rapid� premature population convergence
 That is usually
the case with the MFD problem� populations generally converge to a low �tness within � to ��
generations and stay there unless mutation improves their �tness


In comparison� the search space of an example function optimization� where the function is x�

or even x��y��z� provides a smooth grade for crossover in which most if not all improvements will
move the best �t individuals towards the optimum solution
 Looking at their binary representations�
we can see that only a very small de�ning length is necessary for the representation of optimum and
near�optimum solutions
 For instance� the function x�� optimized on the arbitrarily chosen value ��
has a best �t �� bit binary representation of ���� � ��������������
 Second and third best �t are
���� � ��������������� and ���� � �������������� respectively
 We can see that the de�ning
length for these strings is only � bits
 This compact schema is just the type of building block that
crossover needs to function e�ectively
 The small de�ning length also makes the x� function more
impervious to mutation during optimization


��� Hamming Distance

There appears to be another relationship among the optimum solutions in theMFD and the x� and
x� � y� � z� functions� the number of bit changes necessary to transform a lesser �t chromosome
into a better or optimum �t one


For our purposes we will de�ne the Euclidean distance between vectors x and y as d �p
�x��y��

���x��y��
�������xn�yn�

�� with the restriction that xi� y� � f�� �g
 x and y are also vectors in
n�dimensional Hamming space �FS���� and we can therefore de�ne the Hamming distance as

h � number of mismatched bits of x and y 


Looking at the x� function� optimized on the value ��� we can see that despite the small de�ning
length of the schema� the second and third best �t have a Hamming distance of � and � respectively
from the optimum value
 Though there is a good chance that a third best �t chromosome might
improve its �tness through mutation� it is highly improbable that the second best �t would bene�t
from a higher mutation rate
 The average Hamming distance for the �rst through tenth next best
�t is 	
� for this problem� nearly three correct mutations would be necessary to change a population
converged to any one of these values to optimum �tness


However� looking at the MFD problem for symptom set ����� we can see that the second and
third best �t both have a Hamming distance of � from the best value
 The average distance for the
�rst through tenth next best �t is in fact only �
�� rarely would more than one correct mutation
be necessary to change a population converged to any one of these values to the optimum value

Because the de�ning length of this schema is �	 out of a string length of ��� there is a high likelihood
that a random bit �ip will occur in this range


To test the e�ect that the density of the tendency matrix has on the Hamming distance� tests
were run optimizing the MFD on third dense and three�quarters dense matrices
 In these tests�
�� out of the possible ��	� symptom sets were chosen at random and all 	�� possible diagnoses
were generated and ranked according to their ability to explain the symptom set
 The Hamming
distance from the best �t �determined by exhaustive search� was calculated for the �rst ten best
�tnesses


For the third dense matrix� the average Hamming distance was �
	� with an average schema
length of ��
�
 For the three�quarter dense� the average distance was 	
�� and the average schema
length dropped down to �
�
 This would seem to indicate that as the problem space gains more
data to work with� gradients leading to best �t solutions become more numerous� and schema size
falls into a range that can be more readily exploited by crossover


�



� Conclusions

From empirical results� it would seem that mutation should play a much larger role when dealing
with a search space with little helpful gradients
 Since in problems like the MFD the optimal
solutions tend to have larger de�ning schema lengths� spikier search spaces� and smaller Hamming
distances between optimal solutions� a large rate of mutation becomes necessary to e�ciently
explore the problem space
 Problems with smooth gradients tending towards optimum results
tend to have smaller schema because of the shorter jumps between �tness values involved
 This
would make them easier to exploit through crossover and less bene�ted by mutation


Though this was not a rigorous mathematical analysis� empirical evidence seems to bear out
the underestimated importance of mutation in certain types of problems
 Future work on this topic
will include a formal mathematical study of the relationship between Hamming distance� schema
length� and mutation� and a survey of the types of problems which might bene�t from higher than
average mutation rates
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