Research Report AI-1994-03

A Natural Language Querying System
Based on Discourse Representation Theory
and Incorporating Event Semantics

Daniel Wayne Brown

Artificial Intelligence Center
The University of Georgia
Athens, Georgia 30602-7415 U.S.A.

Abstract

This thesis presents a querying system that accepts natural language
inputs and is able to answer natural language queries about the inputs. The
system works by translating English discourses into discourse representation
structures, which are then transformed into Prolog facts and queries.

The program is an extension of a previous implementation of Discourse
Representation Theory. Added functionality includes:

e agsserting facts into and querying the Prolog database.
e handling the past tense.

e handling progressive forms.

e distinguishing between states and events.

The program was developed using GULP, an extension of Quintus Prolog
that facilitates the implementation of unification—based grammars.

Acknowledgements

I would like to thank Dr. Michael Covington for suggesting corrections,
giving me lots of INTX advice, and putting up with my infuriating tendency
to procrastinate. Also, I am thankful to Drs. Donald Nute and Deborah
Schmidt for their willingness to serve on my committee. 1 would also like
to thank Laurel Graham for commiserating with me during times of heavy
deadline pressure and driving on many a late—night trip to the convenience
store. Finally, thanks are in order to Hans Kamp for coming out with a new
book just when I needed it.

Contents

1 Verb Semantics
1.1 Eventualities,
1.2 Aktionsarten
1.3 Tense

2 Discourse Representation Theory
2.1 Model Theory
2.2 Discourse Representation Structures
2.3 Temporal Features
2.4 Query Processing

3 Implementation
3.1 Building DRSes oo
3.2 Translating DRSes Into Prolog
3.3 Queries

4 Further Research Possibilities

ii

15
15
18
22

28

Chapter 1

Verb Semantics

1.1 Eventualities

The inspiration for this thesis was Terence Parsons’ book, Fvents in the Se-
mantics of English (1990). The book is a fleshing—out of Davidson’s (1967)
insights about the semantics of action verbs. Parsons adds details to deal
with state verbs, tense and aspect, and a host of other features of natu-
ral languages. This thesis presents a querying system, DRT-E (Discourse
Representation Theory with Eventualities), that takes Parsons’ observations
into account.

Davidson’s theory was based on the notion that verbs introduce the
existence of events, in much the same way that nouns introduce the existence
of objects. Parsons traces this idea back to Frank Ramsey (1927), who
stated:

‘That Caesar died’ is really an existential proposition, asserting
the existence of an event of a certain sort.

Parsons gives several arguments for the underlying event analysis. One
piece of evidence is that one can often give the same information with or
without explicit reference to events. Parsons illustrates this with the follow-
ing two sentences:

After the singing of the Marseillaise they saluted the flag.
After the Marseillaise was sung they saluted the flag.

The semantic content of the two sentences is basically identical,’ though the

!The former sentence does seem, unlike the latter, to imply that there was only one
singing of the Marseillaise, but this is not critical to the point being made.

former refers explicitly to an event, while the second does not.

Another bit of evidence comes from perceptual statements. Consider
the sentence, “Mary saw Brutus stab Caesar.” What exactly did Mary see?
Did she see the proposition that Brutus stabbed Caesar? Parsons points
out that this sentence says something very different from “Mary saw that
Brutus stabbed Caesar.” Perhaps Mary was not exactly sure what she saw.
Perhaps she realized only that there was a struggle going on, and did not
know the identity of either participant or that a stabbing was involved.
This awkwardness is eliminated if what Mary saw was an event rather than
a proposition; it is entirely plausible that one could see an event without
recognizing its nature.

DRT-E uses the notion of underlying events in its internal representation
of discourses. For example, consider the sentence:

Pedro sees Chiquita.

Ignoring events, the logical form of this sentence would be:
JzJy(named(x, ‘Pedro’) A named(y, ‘Chiquita’) A sees(z, y))
Taking events into account, the same sentence is partially interpreted as:
JdedzJy(named(z, ‘Pedro’) A named(y, ‘Chiquita’) A seeing(e, z, y))

which might be paraphrased as:

There exists a seeing event such that the subject of the seeing is
named Pedro and the object of the seeing is named Chiquita.?

1.2 Aktionsarten

Vendler (1957) introduced a fourfold semantic classification of verbs into
‘activities,” ‘accomplishments,” ‘achievements,” and ‘states.” These classes
have come to be known as ‘Aktionsarten,” which is German for ‘kinds of
actions.’

A state verb expresses a quality that is true either timelessly or for a

specified period of time. An example is ‘loves’ in “Pedro loves Chiquita.”

2Explicit representation of thematic roles was deemed to be tangential to the purpose
of this project.

3The term was first used by the Junggrammatiker (Neogrammarians), a mostly German
school of linguists that flourished around the turn of the century (Kamp and Reyle 1993).

State verbs are not used in the present progressive (e.g., “Pedro is loving
Chiquita” is awkward). Adjectives also express states.

An achievement verb® refers to an instantaneous event. An example is
‘slapped’ in “Pedro slapped Chiquita.” It does not make sense to ask when
an achievement started or how long it took.

An activity verb relates a non—instantaneous event. An example is
‘fought’ in “Pedro fought Chiquita.” It is appropriate to ask the starting
and stopping times of an activity.

An accomplishment verb expresses an activity ending with an achieve-
ment. An example is ‘ate’ in “Pedro ate the haggis.” (Here the activity is
Pedro’s eating process; the achievement is his completion of the eating.) It
is appropriate to ask the finishing time of an accomplishment.

(It is worth noting that verbs can often be extended for use as members
of different classes. For example, even though ‘find’ is generally considered
an achievement verb, it is acceptably used as an accomplishment verb in the
sentence, “How long did it take to find it?”)

It turns out that the Aktionsart of a verb plays a significant role in finding
suitable representations for English sentences in which it occurs. The most
significant distinction is between states and the other three classes, which
henceforth will be collectively referred to as ‘events.” The union of these two
superclasses will be termed ‘eventualities.”

One of the most obvious manifestations of the distinction among verb
classes is that some verbs have continuous forms, while others do not.
Vendler points out that in English, only event verbs can be used to an-
swer the question, “What are you doing?” Valid answers include “I am
{running, working, eating, etc.}” but not “I am {knowing, loving, seeing}.”
On the other hand, only state verbs can be used in the question, “Do you
(verb)?” (if the question is taken to mean that the eventuality applies to a
present rather than a habitual action).

The most important distinction between events and states for the pur-
pose of constructing a model is that events have culmination points (Parsons
1990), i.e., times at which they finish. States can merely be said to hold or
not at a given time; it is awkward to say that a state is ‘finished’. DRT-E
reflects this by means of the special predicates cul and hold.

DRT-E also has a third reserved predicate, hab, which is used to handle
habitual readings, most notably for the simple present. This predicate is

“Fleck (1988) prefers the term ‘state change.’
This usage is consistent with that of Parsons (1990).

needed for the correct handling of queries about habitual action.

1.3 Tense

The handling of time in DRT-E is inspired by Reichenbach’s (1947) system
of tense logic. Reichenbach described tenses in relation to three times: time
of occurrence, time of utterance, and time of reference. The first two are
self-explanatory. The reference time is the time that the utterer is talking
about.

Reichenbach’s system is good at explaining exactly what different tenses
mean. The present tense indicates that all three times are concurrent. The
past tense indicates that the time of occurrence is concurrent with the time
of reference, which is before the time of utterance.

The time of reference becomes significant in cases where the tense ex-
presses a relation to a time other than the utterance time. An example is
the past perfect form, which indicates that the reference time is before the
utterance time but after the occurrence time. Since the current implemen-
tation does not handle perfect forms, it does not take reference time into
account.

Chapter 2

Discourse Representation
Theory

2.1 Model Theory

DRT-E uses Discourse Representation Theory (Kamp 1981; Kamp and Reyle
1993), commonly known as DRT, as an interlingua between the English in-
puts provided by the end user and their Prolog representations. DRT is a
method of representing a discourse composed of multiple sentences with a
logical form that captures the truth conditions of the discourse.

DRT is based on a model-theoretic semantics. In DRT, the truth con-
ditions for a discourse depend on how it fits into some model.

A model is a precisely defined knowledge base. A model for a language
is defined as an ordered pair (D, I), where D is the domain (i.e. the set
of things that can be referred to in the model) and I is an interpretation
function that maps from the language to the domain.

I maps logical constants' onto elements of D and maps predicates onto
sets of tuples of elements of D. For example, in the model of the current
implementation, I(beats) is the set of all tuples (x,y) such that x beats y.

Model theory makes it possible to define precisely what is means for
a formula to be true. In particular, f(z1,z2,...) is true if and only if
(I(z1),I(x2),...) € I(f). The truth value of a formula constructed by ap-
pending a unary logical connective to another formula or joining two for-
mulas with a binary logical connective is determined according to the truth

I There are no logical constants in the current implementation. Even proper names are
treated as properties of individuals, not as unique identifiers.

value(s) of the formula(s) and the definition of the connective. Some exam-
ples:

e —P is true if and only if P is false. true.

e P — (@ is true if and only if P is false or @ is true (or both). of z in
D.

e dz P is true if and only if P is true for at least one value of x in D.

2.2 Discourse Representation Structures

In DRT, a discourse is represented by a discourse representation structure
(DRS). A DRS consists of an ordered pair (U, Con), where U is a set of
entities in the universe of discourse, and Con is a set of conditions that con-
strains the relationships of those entities. In other words, U corresponds to
the domain of a model, and the interpretation of Con in the model deter-
mines the truth conditions of the discourse represented by a DRS.

A discourse is true in a given model if and only if its DRS can be em-
bedded in the model in such a way that all the conditions are satisfied. In
other words, there must be a way to instantiate each discourse referent to
a member of the model’s domain so that each of the discourse conditions is
satisfied by the model’s interpretation.

For example, the discourse

Pedro owns a green donkey. He beats it.

can be naively represented by the following DRS: ({z,y, z, w},
{named(z, ‘Pedro’), donkey(y), green(y), owns(x,y), z = z,y =
w, beats(z,w)}) or in diagrammatic form:

x7y7 Z7w

named(z, Pedro’)
donkey(y)
green(y)
owns(x,y)

z=u

y=w

beats(z, w)

In practice, the equivalent discourse referents are combined, so the above
discourse becomes

L,y

named(z, Pedro’)
donkey(y)
green(y)
owns(z,y)
beats(z,y)

The first—order logic equivalent of this DRS is
JrJy(named(z, ‘Pedro’) A donkey(y) A green(y) A beats(z,y))

Therefore the discourse is true if and only if there exist « and y such that x
is named Pedro, y is a donkey, y is green, x owns y, and x beats y.

Anaphoric pronouns, like ‘he’ and ‘it’ in the above example, are rather
tricky to resolve. There is no completely satisfactory way to determine what
an anaphoric pronoun refers to. DRT-E simply resolves a pronoun with the
most recent noun that agrees with it in gender.?

Conditional statements are a bit more complicated. The antecedent and
consequent parts each have their own sub—-DRSes. For example, the sentence

If Pedro is hungry, he eats.

can be represented as:3

X

named(x,' Pedro’) | =

hungry () eats(x)

2Since plurals have not yet been implemented, number agreement is not enforced for
pronouns. See Izzo (1993) and Graham (forthcoming) for DRT implementations that
handle plurals.

3 Actually, proper names should be raised to the outermost DRS, since they should be
accessible throughout the discourse. Unfortunately, this has not been done in the current
implementation.

The sub—DRSes connected by the arrow represent a DRS—condition that is
satisfied if and only if every value of x that makes the left-hand sub-DRS
true makes the right-hand one true also.

Universal statements receive similar treatment. The sentence

Every man loves a donkey.

is represented as:

- Y

= | donkey(y)

man(z) loves(z,y)

The sub—DRS to the left of the arrow denotes the scope of the conditional,
while the one to the right is the restrictor. Consequently, the discourse
referents in the left DRS are available for use in the right one, though the
reverse is not true.

Negative sentences are represented by negated DRSes. For example, the
sentence

Pedro does not own a donkey.

is represented as:

T,y

named(x, Pedro’)
donkey(y)
owns(z,y)

The condition expressed by the negated DRS is satisfied if and only if there
is no assignment of values to x and y that satisfies the DRS without the
negation.

Negative existential sentences combine the features of the two types of
DRS. An example is the sentence

No man owns a donkey.

which is represented by

man(z)

donkey(y) owns(zx,y)

2.3 Temporal Features

The version of DRT used in DRT-E goes into some further detail on the
semantics of verbs. DRS construction takes into account the theory of un-
derlying events; it also distinguishes between states and events and handles
some temporal and aspectual information.

Since verbs introduce the existence of events, it is necessary to add a
discourse referent whenever a new event is described. That referent can
then be used when noting characteristics of the event — most notably, the
time of the event.

The representation of the time of an event varies according to its Ak-
tionsart, tense, and aspect. The cul, hold, and hab predicates are used to
associate an eventuality with a time. State verbs always utilize the hold
predicate. Event verbs may use any of the three, depending on how they
are used.

A description of an event that utilizes the simple past tense is assumed
to be a reportive use and therefore requires the cul predicate. For example,
the sentence

Pedro fed Chiquita.

would have as part of its semantics cul(e,t), where e is the event marker
for Pedro’s feeding of Chiquita (his donkey) and ¢ is the time at which the
event culminated.

Progressive forms of events require the use of the hold predicate. A
progressive sentence, such as

Pedro is feeding Chiquita.

describes a state. Parsons (1990) calls such a state the ‘in—process state’ of
its corresponding event. The above sentence describes the in—process state
of a feeding event. Parsons suggests that an ‘in—process’ predicate be intro-
duced to distinguish the state from the event. The current implementation,
however does not do this; using hold instead of cul is sufficient distinction
for the purposes of the program.

The hab predicate is used to handle the habitual sense of a verb. DRT-E
assumes that an instance of the simple present form of an event verb indi-
cates a habitual usage; e.g. “Pedro feeds Chiquita” is taken to mean that it
is a normal practice for Pedro to feed Chiquita.

Time itself is handled by introducing a special discourse referent now
as part of every discourse and expressing the relationship of the time of an
eventuality to now (Kamp and Reyle 1993). The special predicates at and
before are used to express the relationship between two times. These two are
sufficient, since DRT-E currently handles only the present and past tenses.

An example of a DRS for a present tense state sentence is:

Pedro sees Chiquita.

s, x,y,t, now

named(z, Pedro’)
named(y, Chiquita’)
seeing(s, x,y)
hold(s, t)

at(t,now)

Paraphrased, the DRS states that there is a seeing—state that holds now
that has Pedro as its subject and Chiquita as its object.
An example of a DRS for a past tense event sentence is:

10

Pedro fed Chiquita.

e, x,y,t, now

named(x, Pedro’)
named(y, Chiquita’)
feeding(e, x,y)
cul(e, t)
before(t,now)

The DRS indicates that there was a feeding—event that culminated before
now that had Pedro as its subject and Chiquita as its object.
The habitual case is handled analogously:

Pedro beats Chiquita.

s, x,Y,t, now

named(x, Pedro’)
named(y, Chiquita’)
beating(s, z,y)
hab(s,t)

at(t,now)

The best way to explain this DRS is to say that Pedro’s beating of Chiquita
is a habitual state that holds now, even though an actual beating—event may
not be taking place at the moment.

Progressive forms make event verbs refer to states, e.g.:

Pedro was eating.

s, x,t, now

named(x, Pedro’)
eating(s,)
hold(s, t)
before(t,now)

11

The use of hold instead of cul makes it clear that the in—process state of an
eating event, rather than the event itself, is involved here.
Adjectives also introduce states:

Pedro is happy.

s, x,t, now

named(z, Pedro’)
happy (s, x)
hold(s,)
at(t,now)

2.4 Query Processing

DRT-E represents queries with an ad hoc representation that is not part of
DRT. An interrogative sentence introduces a sub—DRS labeled as a query.
For example, the query

Is Pedro beating Chiquita?

can be represented as:

s, x,Y,t, now

named(z, Pedro’)
named(y, Chiquita’)
beating(s, z,y)
hold(s, t)

at(t,now)

Unlike the other kinds of sub-DRSes introduced previously, query DRSes
do not have truth values. They do not affect the truth of superordinate
DRSes in any way. Their purpose is dual: to provide a representation for
interrogative sentences, and to aid in the construction of database queries.

12

There are two classes of queries that need some extra processing in the
current implementation. One class includes queries of the form, “Does (N P)
(VP)?” The other class includes queries of the form, “Did (NP) (V P)?”

Does—questions require special treatment when the verb phrase describes
an event. Since the simple present form of an event verb indicates a habitual
usage, such a query is assumed to be asking about a habitual occurrence.
Consequently, any instances of cul in the query conditions must be replaced
with hab. For example,

Does Pedro beat Chiquita?

is represented as:

S, x,Y,t, now

named(z, Pedro’)
named(y, Chiquita’)
beating(s, z,y)
hab(s,t)

at(t,now)

Did—questions are ambiguous. They can ask about an event that oc-
curred in the past, a state that held in the past, or an eventuality that was
common in the past. Therefore all uses of cul, hold, and hab in such a query
are replaced with the disjunction of all three. For example,

Did Pedro beat Chiquita?

is represented as:

13

s, 2,Yy,t, now

named(z, Pedro’)
named(y,‘Chiquita’)

beating(s, x,y)

cul(s,t) V hold(s,t) V hab(s,t)
before(t,now)

14

Chapter 3

Implementation

3.1 Building DRSes

DRT-E’s DRS-building algorithm is based on that of Johnson and Klein
(1986). See also Covington and Schmitz (1988) and Goodman (1989), which
discuss previous versions of the program, for a more detailed treatment.!

Discourse structure is determined by means of a simple top—down parser
written in definite clause grammar (DCG) notation. The parser implements
a unification-based grammar that enforces subject-verb agreement? and
builds discourse representation structures.

A DRS is represented in Prolog as drs(U,Con), where U is a list of the
discourse referents in the DRS, and Con is a list of predicates that indicate
the conditions that constrain the elements in the discourse. For example,
the DRS for

Pedro is eating.
which is shown above in graphical form, becomes in Prolog something like

drs([now,_7410,_7546,_7548], [at (_7548,now) ,hold(_7546,_7548),
eating(_7546,_7410) ,named (_7410,Pedro)])

(The underscores followed by numbers are variable names generated by Pro-
log.)

! This section closely follows the Covington and Schmitz paper.

2Even though plural nouns have not been implemented yet, there are cases where the
check is needed to disambiguate the verb form; e.g. ‘beat’ is both the simple past and the
plural present of the verb.

15

Most of the work of the parser is done by feature structure unification.
DRT-E was developed using GULP (Graph Unification Logic Programming)
3.0a (Covington 1993), an extension of Quintus Prolog that facilitates the
implementation of unification—based grammars. The first argument of each
node in the parse tree is a feature structure of the form:

index: ...
class: ...
syn: akt: ...
argl: ...
arg2: ...
[in: ...
out: ...

sem: res:
out: ...

scope: m: ...
| pe: out: ...

num: ...
agr: tense: ...
asp: ...

The roles of the features are as follows:

index The discourse marker associated with the node. Instantiated only

on nouns and nodes that dominate, modify (e.g. adjectives), or unify
with nouns.

class Instantiated to common or proper on nouns; instantiated to transitive
or intransitive on verbs.

akt Aktionsart of the verb.
argl, arg2 Discourse markers for subject and direct object of the verb.
sem:in State of DRS before processing the current node.

sem:out State of DRS after processing the current node.

16

res, scope Used to determine the logical structure of a sentence.

agr Contains information on tense, aspect, and number for the enforcement
of subject—verb agreement.

To illustrate, this is the phrase—structure rule for common nouns:

n(N) --> [Form],
{ common_noun(Form,Num,lambda(I,Semantics)),
append (Semantics,Con,NewCon) ,
N = syn: (index:I ::
class:common)
sem: (in: [drs(U,Con) |Super]
out: [drs([I|U],NewCon) |Super])
agr: num:Num }.

Besides accepting a noun, this rule accomplishes several things:

e Generates a new variable (I), which is later instantiated to become a
unique discourse marker for the noun.

e Determines the number of the noun so that subject—verb agreement
can be enforced.

e Adds the index of the noun to U and the semantics of the noun to
Con of the current DRS.

Nouns are stored in a table that includes the form, number, and seman-
tics of each noun. A sample entry is

common_noun (donkey, sg,lambda(X, [donkey (X) ,gender(X,n)]1)).

The first argument is the actual form of the noun. The second indicates
that the noun is singular. The third expresses the semantics of the noun; in
this case, it indicates that ‘donkey’ introduces a discourse referent X such
that X is a donkey and the gender of X is neuter.?

Verb rules are similar. This is the rule for simple present intransitive
verbs:

3The gender eventually gets discarded, as it is not really part of the semantics of the
sentence; it is only used in determining the antecedents of pronouns.

17

v(V) --> [Form],
{ verb(Form, Akt,Num,Tense, Asp,
lambda(I,Arg,Time,Semantics)),
append(Semantics,Con,NewCon),
V = syn : (class:intransitive ::
akt:Akt ::
argl:Arg)
sem : (in: [drs(U,Con) |Super]
out: [drs([Time,I|U],NewCon) |Super])
agr: (num:Num ::
tense:Tense ::
asp:Asp) }.

The explanation is much the same for verbs as for nouns, except that there
are a few more features that have to be instantiated for verbs, and an extra
discourse referent is introduced for the occurrence time.

A sample lexical entry for a verb is as follows:

verb(sees,s,sg,pres, _,
lambda(S,X,Y,T, [at(T,now) ,hold(S,T),seeing(S,X,¥)]1)).

Again, the first argument is the word itself. The second indicates that ‘sees’
is a state verb. The third and fourth arguments show that the form of
the verb is singular and present tense. The fourth argument indicates that
the aspect will remain uninstantiated. The fifth means that ‘sees’ introduces
discourse referents S, X, Y, and T such that S is a seeing—event with subject
X and object Y, S holds at time 7', and T is concurrent with now.

3.2 Translating DRSes Into Prolog

For the simplest DRSes, translating into Prolog is almost trivial. Discourse
conditions are already in the form of Prolog clauses before the translation
process begins.

Simple queries are the easiest to handle. The conditions are in the exact
form needed for queries. For example,

Does Pedro love Chiquita?

which is represented by the DRS

18

s, x,y,t, now

named(z, Pedro’)
named(y, Chiquita’)
loving(s, x, y)
hold(s, t)

at(t,now)

becomes the Prolog query:

7- named(X,pedro), named(Y,chiquita), loving(S,X,Y), hold(S,T),
at (T,now) .

Simple statements require a bit more tinkering. Simply asserting the
conditions will not work, as there is an implied existential quantifier, while
Prolog assumes an implied universal quantifier. Asserting something like
named (X, pedro) would result in everything being named Pedro. The desired
effect is to note the existence of just one thing named Pedro.

Since Prolog has no way of representing existential quantifiers, they must
be eliminated somehow. This is done by a process known as skolemization
(Skolem 1928), in which existentially quantified variables are replaced with
unique identifiers. The current implementation uses lists of numbers for this
purpose. In simple cases, a one element list is sufficient. For example,

Pedro loves Chiquita.

is represented by the DRS

s, x,y,t, now

named(x, Pedro’)
named(y, Chiquita’)
loving(s, x, y)
hold(s,)

at(t,now)

which is asserted into the Prolog database as something like

19

named([1],pedro) .
named ([2] ,chiquita).
loving([3], [1], [2]).
hold([3], [4]1).

at ([4] ,now) .

The above query, “Does Pedro love Chiquita?” should be answered affir-
matively after this statement has been processed, because there is in the
knowledge base a loving—event ([3]) with Pedro ([1]) as its subject and
Chiquita ([2]) as its object.

Simple if-then conditions are easy to handle. An if-then DRS basically
corresponds to a Prolog rule. For example,

Every donkey is big.

which is represented as:*

donkey(z) big(x)

is asserted as the rule
big(X) :- donkey(X).

A problem arises when the right—hand side of an if~then DRS has more
than one condition because a Prolog rule cannot have more than one conse-
quent. The current implementation gets around this problem by providing
an operator ::- that is the same as :- except that it allows compound
consequents and can be queried. This operator is only used in intermediate
processing, however; consequents are broken up before rules are asserted
into the database. For example,

Every donkey is big and green.
which has the DRS

4Temporal information is not provided here because statements of equality are assumed
to be timeless in the current implementation.

20

x
= | big(z)
donkey () ereen(z)
is initially translated as:
big(X), green(X) ::- donkey(X).

but is asserted as:

big(X) :- donkey(X).
green(X) :- donkey(X).

Things get complicated when discourse referents are introduced in the
consequent of an if-then DRS. Consider the sentence

Every farmer owns a donkey.

which is represented as:

s,y,t, now
x donkey(y)
= | owning(s,z,y)
farmer(x) hold(s, £)
at(t, now)
Obviously,
donkey(Y), owning(S,X,Y), hold(S,T), at(T,now) ::- farmer(X).

will not do, because that means that every farmer owns every donkey. Also,

donkey ([1]), owning(S,X,[1]), hold(S,T), at(T,now) ::-
farmer (X) .

21

won’t work, because that means that every farmer owns the same donkey
([11).

The trick is to make the identity of the donkey dependent on the identity
of the farmer. This is done in the current implementation by giving the
donkey a dummy name that includes the farmer’s, viz.:

donkey ([11X]), owning(S,X,[11X]), hold(S,T), at(T,now) ::-
farmer (X) .

This approach distinguishes among donkeys owned by different farmers.’

DRT-E does not fully support negative statements and queries at this
time. Prolog lacks a facility for expressing negation explicitly, which is
necessary for handling negative queries properly. See Izzo (1993) for a similar
implementation that handles negation.

3.3 Queries

When given a natural language discourse, DRT-E outputs the corresponding
DRS, a record of database assertions and queries, and the results of the
queries. A simple example:

| : Pedro is happy. Is he happy?

[pedro,is,happy, .,is,he,happy,?]
[now,_9962,_9989, _9990]
QUERY:
[_10279,_10280]
happy (_10279,_9962)
hold(_10279,_10280)
at (_10280,now)
at (_9990,now)
ho1d(_9989,_9990)
happy (_9989, _9962)
named (_9962,Pedro)

Asserting: named([6],Pedro)

®In effect, [11X] is a Skolem function (Skolem 1928) of X, because it is uniquely instan-
tiated for every different value of X.

22

Asserting: happy([5], [6])

Asserting: hold([5], [4])

Asserting: at([4],now)

Querying: happy(_10279, [6]),ho1d(_10279,_10280),at(_10280,now)
Result: yes

The first line of output is the result of transforming the discourse into a list
of Prolog atoms. The part between the dashed lines is the resulting DRS
displayed in indented form. The remainder tells what database transactions
occurred.

The first line of the DRS is its universe of discourse. The remainder
is composed of DRS conditions and sub-DRSes. In the above example,
the only sub-DRS is the query, which is represented by the marker QUERY:
followed by four indented lines. The conditions come out in reverse order;
notice that the query in the example comes before the assertions. However,
as the database record shows, the processing is done in the correct order

A more complicated example:

| : Pedro is green. If Pedro is green then he is happy. Is he
happy?

[pedro,is,green, .,if ,pedro,is,green,then,he,is,happy, .,is,he,
happy, 7]
[now,_9036,_9063,_9064]
QUERY:
[_9957,_9958]
happy (_9957,_9036)
hold(_9957,_9958)
at (_9958,now)
IF:
[_9501,_9502]
green(_9501,_9036)
hold(_9501,_9502)
at (_9502,now)
THEN:
[_9669,_9670]
happy (_9669, _9036)
hold(_9669,_9670)
at(_9670,now)

23

at (_9064,now)

hold(_9063,_9064)

green(_9063,_9036)

named (_9036,Pedro)

Asserting: named([2],Pedro)

Asserting: green([1],[2])

Asserting: hold([1], [0])

Asserting: at([0],now)

Asserting: happy([4,_9502,_9501],[2]):-green(_9501,[2]),
hold(_9501,_9502),at(_9502,now)

Asserting: hold([4,_9502,_9501], [3,_9502,_9501]) :-

green(_9501, [2]) ,ho1d(_9501,_9502) ,at(_9502,now)

Asserting: at([3,_.9502,_9501] ,now) :-green(_9501, [2]),
hold(_9501,_9502),at(_9502,now)

Querying: happy(_9957,[2]),ho1d(_9957,_9958) ,at(_9958,now)

Result: yes

In this case there are two sub—DRSes: the query and the if-then DRS.
This is an example of how questions beginning with ‘Does’ are answered:

| : Pedro beats Chiquita. Does he beat her?

[pedro,beats,chiquita, .,does,he,beat ,her, 7]
[now,_11611,_11824,_11834,_11837]
QUERY:
[_12372,_12375]
beating(_12372,_11611,_11824)
hab(_12372,_12375)
at (_12375,now)
at(_11837,now)
hab(_11834,_11837)
beating(_11834,_11611,_11824)
named(_11824,Chiquita)
named(_11611,Pedro)
Asserting: named([8],Pedro)
Asserting: named([7],Chiquita)
Asserting: beating([6],[8],[7])

24

Asserting: hab([6], [5])

Asserting: at([5],now)

Querying: beating(_12372,[8],[7]1),hab(_12372,_12375),
at(_12375,now)

Result: yes

Note that the query is assumed to be asking about a habitual action. That
is why the following query fails:

| : Pedro is beating Chiquita. Does he beat her?

[pedro,is,beating,chiquita, .,does,he,beat, her,?]
[now,_13428,_13641,_13651,_13654]
QUERY:
[_14190,_14193]
beating(_14190,_13428,_13641)
hab(_14190,_14193)
at(_14193,now)
at (_13654,now)
hold(_13651,_13654)
beating(_13651,_13428,_13641)
named(_13641,Chiquita)
named (_13428,Pedro)
Asserting: named([12],Pedro)
Asserting: named([11],Chiquita)
Asserting: beating([10],[12],[11])
Asserting: hold([10],[9])
Asserting: at([9],now)
Querying: beating(_14190,[12],[11]),hab(_14190,_14193),
at(_14193,now)
Result: no

Contrast with the appropriate question:

| : Pedro is beating Chiquita. Is he beating her?
[pedro,is,beating,chiquita,.,is,he,beating, her,?]

[now,_8884,_9097,_9107,_9110]

25

QUERY:
[_9644,_9647]
beating(_9644,_8884,_9097)
hold(_9644,_9647)
at (_9647 ,now)
at(_9110,now)
hold(_9107,_9110)
beating(_9107,_8884,_9097)
named (_9097,Chiquita)
named (_8884,Pedro)
Asserting: named([3],Pedro)
Asserting: named([2],Chiquita)
Asserting: beating([1],[3],[2])
Asserting: hold([1], [0])
Asserting: at([0],now)
Querying: beating(_9644,[3],[2]),hold(_9644,_9647),
at (_9647 ,now)
Result: yes

The following examples illustrate the handling of questions beginning
with ‘Did.” The first is a simple past reading:

| : Pedro beat Chiquita. Did he beat her?

[pedro,beat,chiquita,.,did,he,beat,her,?]
[now,_15177,_15390,_15400,_15403]
QUERY:
[_16994,_16997]
beating(_16994,_15177,_15390)
cul (_16994,_16997) ;hold(_16994,_16997) ;hab(_16994,_16997)
before(_16997,now)
before(_15403,now)
cul (_15400,_15403)
beating(_15400,_15177,_15390)
named (_15390,Chiquita)
named (_15177,Pedro)

Asserting: named([16],Pedro)

26

Asserting: named([15],Chiquita)

Asserting: beating([14],[16],[15])

Asserting: cul([14], [13])

Asserting: before([13],now)

Querying: Dbeating(_16994, [16],[15]), (cul(_16994,_16997);

hold(_16994,_16997) ;hab(_16994,_16997)),

before(_16997 ,now)

Result: yes

The second is a progressive reading:

| : Pedro was beating Chiquita. Did he beat her?

[pedro,was,beating,chiquita, .,did,he,beat,her, 7]
[now,_18252,_18465,_18475,_18478]
QUERY:
[_19014,_19017]
beating(_19014,_18252,_18465)
cul(_19014,_19017) ;ho1d(_19014,_19017) ;hab(_19014,_19017)
before(_19017 ,now)
before(_18478,now)
hold(_18475,_18478)
beating(_18475,_18252,_18465)
named (_18465,Chiquita)
named (_18252,Pedro)
Asserting: named([20],Pedro)
Asserting: named([19],Chiquita)
Asserting: beating([18], [20], [19])
Asserting: hold([18], [17]1)
Asserting: before([17],now)
Querying: beating(_19014,[20],[19]), (cul(_19014,_19017);
hold(_19014,_19017) ;hab(_19014,_19017)),
before(_19017,now)
Result: yes

The habitual interpretation cannot be shown, since DRT-E does not cur-
rently recognize past habitual actions.

27

Chapter 4

Further Research
Possibilities

The most obvious possibility for further extension of DRT-E would be to
integrate it with the implementations of Izzo (1993) and Graham (forth-
coming). Izzo’s implementation incorporates defeasible reasoning, explicit
negativity, and generic plurals. Graham’s implementation adds a limited
capability to handle plurals and definite descriptions.

The past tense of the copula (‘was’/‘were’) has not been implemented
because doing so would involve a new representation for equivalence. Specif-
ically, equivalence needs to be made relative to time. This could be done
in part by representing equality similarly to other predicates — i.e. making
a three—place predicate with an associated holding time. However, some
special inference procedures would have to be added for this predicate. This
extension would become even more useful if implemented in conjunction
with a table of identity — that is, a table that lists pairs of items that
should be unifiable even though they have different discourse referents — so
that queries about an item would have the same truth conditions regardless
of what name is used to refer to it.

The past habitual reading should be fairly easy to add. The construction
‘used to’ marks this reading. All that is really needed are a couple of new
verb rules. Queries beginning with ‘Did’ already result in affirmative answers
when they refer to past habitual actions. Optionally, one could introduce
queries containing ‘use to’ (e.g., “Did Pedro use to beat Chiquita?”), which
are acceptable in some English dialects.

Other tenses would not be difficult to add. The future could be in-

28

terpreted in much the same way as the past, using after instead of before.
Perfect tenses could be handled if reference time were taken into account.

Another useful extension would be a facility for queries about the tempo-
ral relationship between two events, e.g. whether one event happened before
another. Ideally, this would include default reasoning about the sequence of
eventualities in a discourse. For example, the program should recognize that
if two past events are mentioned consecutively, the one that was mentioned
first probably happened first.

29

Bibliography

Covington, Michael (1993) Brief notes on GULP 3. Artificial Intelligence
Programs, University of Georgia.

Covington, Michael, and Schmitz, Nora (1988) An implementation of dis-
course representation theory. ACMC Research Report 01-0023, Uni-
versity of Georgia.

Covington, Michael; Nute, Donald; Schmitz, Nora; and Goodman, David
(1988) From English to Prolog via discourse representation theory.
ACMC Research Report 01-0024, University of Georgia.

Davidson, Donald (1967) The logical form of action sentences. In N. Rescher,
ed., The logic of decision and action 81-95. Pittsburgh: University
of Pittsburgh Press.

Fleck, Margaret (1988) Boundaries and topological algorithms. Technical
Report 1065, MIT Artificial Intelligence Laboratory.

Goodman, David (1989) An implementation of an extension to discourse
representation theory: translating natural language to discourse rep-
resentation structures to Prolog clauses. Master’s Thesis, University
of Georgia.

Graham, Laurel (forthcoming) An implementation of plurality in discourse
representation theory. Master’s Thesis, University of Georgia.

1zz0, Gregory John (1993) Incorporating defeasible reasoning into an imple-
mentation of discourse representation theory. Master’s Thesis, Uni-
versity of Georgia.

Johnson, Mark, and Klein, Ewan (1986) Discourse, anaphora, and parsing.
CSLI Research Report 86-63, Stanford University.

Kamp, Hans (1981) A theory of truth and semantic representation. In J.
Groenendijk, T. Janssen, and M. Stokhof, eds. Formal methods in the

30

study of language 277-322. Amsterdam: University of Amsterdam.

Kamp, Hans, and Reyle, Uwe (1993) From discourse to logic: introduction
to modeltheoretic semantics of natural language, formal logic and dis-
course representation theory. Dordrecht: Kluwer.

Parsons, Terence (1990) FEwvents in the semantics of English. Cambridge,
Mass.: MIT Press.

Ramsey, Frank (1927) Facts and propositions. Reprinted in Ramsey, Frank,
Foundations: essays in philosophy, logic, mathematics, and economics
40-57. Atlantic Highlands, N.J.: Humanities Press, 1978.

Reichenbach, Hans (1947) Elements of symbolic logic. New York: Macmil-
lan.

Skolem, Thoralf (1928) Uber die mathematische Logik. Norsk matematisk
tidskrift 10:125-142.

Vendler, Zeno (1957) Verbs and times. In Vendler, Zeno, Linguistics in
philosophy 97-121. Ithaca: Cornell University Press, 1967.

31

