
Research Report AI-1989-08
Efficient Prolog: A Practical Guide

Michael A. Covington

Artificial Intelligence Programs
The University of Georgia

Athens, Georgia 30602

August 16, 1989

Abstract

Abstract: Properly used, Prolog is as fast as any language with com-
parable power. This paper presents guidelines for using Prolog effi-
ciently. Some of these guidelines rely on implementation- dependent
features such as indexing and tail recursion optimization; others are
matters of pure algorithmic complexity.

Many people think Prolog is inefficient. This is partly because of the poor
performance of early experimental implementations, but another problem is
that some programmers use Prolog inefficiently.

Properly used, Prolog performs automated reasoning as fast as any other
language with comparable power. It is certainly as fast as Lisp, if not faster.
There are still those who rewrite Prolog programs in C “for speed,” but this
is tantamount to boasting, “I can implement the core of Prolog better than
a professional Prolog implementor.”

1

This paper will present some practical guidelines for using Prolog efficiently.
The points made here are general and go well beyond the implementation-
specific advice normally given in manuals.

1 Think procedurally as well as declaratively.

Prolog is usually described as a declarative or non-procedural language. This
is a half-truth. It would be better to say that most Prolog clauses can be
read two ways: as declarative statements of information and as procedures
for using that information. For instance,

in(X,usa) :- in(X,georgia).

means both “X is in the U.S.A. if X is in Georgia” and “To prove that X is
in the U.S.A., prove that X is in Georgia.”

Prolog is not alone in this regard. The Fortran statement

X=Y+Z

can be read both declaratively as the equation x = y + z and procedurally as
the instructions LOAD Y, ADD Z, STORE X. Of course declarative readings
pervade Prolog to a far greater extent than Fortran.

Sometimes the declarative and procedural readings conflict. For example,
Fortran lets you utter the mathematical absurdity X=X+1. More subtly,
the Fortran statements

A = (B+C)+D

A = B+(C+D)

2

look mathematically equivalent, but they give profoundly different results
when B=10000000, C=-10000000, and D=0.0000012345.

Analogous things happen in Prolog. To take a familiar example, the clause

ancestor(A,C) :-

ancestor(A,B), ancestor(B,C).

is part of a logically correct definition of “ancestor,” but it can cause an
endless loop when Prolog interprets it procedurally.

The loop arises because, when B and C are both unknown, the goal ancestor(A,B)
on the right is no different from ancestor(A,C) on the left. The clause simply
calls itself with essentially the same arguments, making no progress toward
a proof. But if the clause is rewritten as

ancestor(A,C) :-

parent(A,B), ancestor(B,C).

there is no loop because ancestor cannot call itself with the same arguments.

The moral is that to use Prolog effectively, one must understand not only the
declarative reading of the program but also the procedures that the computer
will follow when executing it. The limitations of Prolog’s built-in proof pro-
cedures are not flaws in the implementation; they are deliberate compromises
between logical thoroughness and efficient search.

2 Narrow the search.

Searching takes time, and an efficient program must search efficiently. In a
knowledge base that lists 1000 gray objects but only 10 horses, the query

?- horse(X), gray(X).

3

can be 100 times as fast as the alternative

?- gray(X), horse(X).

because it narrows the range of possibilities earlier.

Many opportunities to narrow the search space are much more subtle. Con-
sider the problem of determining whether two lists are set-equivalent — that
is, whether they have exactly the same elements, though not necessarily in
the same order.

Two lists are set-equivalent if and only if one of them is a permutation of the
other. One strategy, then, is to generate all the permutations of the first list
and compare them to the second list:

set_equivalent(L1,L2) :-

permute(L1,L2).

The trouble is that an N-element list has N! permutations; testing the set-
equivalence of two 20-element lists can require 2.4 × 1018 comparisons. I
have actually seen someone attempt this in a Prolog program.

It is much faster to sort both lists and compare the results:

set_equivalent(L1,L2) :-

sort(L1,L3), sort(L2,L3).

An N-element list can be sorted in about N log2 N steps — i. e., about 86
steps per 20-element list — and each “step” involves considerably less work
than generating a new permutation. So this technique is faster than the first
one by a factor of more than 1016.

4

3 Let unification do the work.

As a classroom exercise I ask my students to write a predicate that accepts a
list and succeeds if that list has exactly three elements. Some of the weaker
answers that I get look like this:

has_three_elements(X) :-

length(X,N),

N = 3.

Slightly better are those that say

has_three_elements(X) :-

length(X,3).

thereby letting the built-in pattern-matcher test whether length returns 3.
But the best students cut the Gordian knot by writing:

has_three_elements([_,_,_]).

The point is that [_,_,_] matches any three-element list and nothing else.
Unification does all the work.

Unification can even rearrange the elements of a data structure. Here is a
predicate that accepts a list and generates, from it, a similar list with the
first two elements swapped:

swap_first_two([A,B|Rest],[B,A|Rest]).

Again, unification does all the work. More precisely, the data structures
[A,B|Rest] and [B,A|Rest], or templates for them, are created when the
program is compiled, and unification gives values to the variables at run time.

5

4 Avoid assert and retract.

Beginners tend to overuse the assert and retract predicates to modify
the knowledge base. There are two good reasons not to do so: assert and
retract are relatively slow, and, perhaps more importantly, they lead to
messy logic.

Even the slowness is twofold. It takes appreciable time to perform an assert

or retract. Further, in most implementations, a predicate that has been (or
can be) modified by assert or retract cannot run at full compiled speed.,
(ALS Prolog is a striking exception.)

More importantly, the haphazard use of assert and retract confuses the
program logic. The effects of assert and retract are not undone by back-
tracking. By contrast, most predicates return their results by instantiating
variables; these instantiations are discarded if the overall goal fails, and you
get only the results of computations that have succeeded. If you use assert

as a general way to store temporary data, you will end up unable to tell
whether the data came from successful computations. This can make pro-
grams very hard to debug.

The normal way to store temporary information is to pass it along from
one step to the next as arguments to procedures. The legitimate uses of
assert and retract are to record new knowledge in the knowledge base
(in a program that “learns”) and, less commonly, to store the intermediate
results of a computation that must backtrack past the point at which it
gets its result. Even in the latter case, the built-in predicates bagof and
setof often provide a better way to collect alternative solutions into a single
structure. They are implemented in hand-optimized machine code and are
faster than anything you could construct in Prolog.

6

5 Understand tokenization.

The internal memory representation of data in Prolog can be quite different
from the printed representation. The fundamental unit is the term, of which
there are three types: numbers, atoms, and structures. Numbers are stored in
fixed-point or floating-point binary, the same as in most other programming
languages. Atoms and structures have representations specific to Prolog.

Atoms are stored in a symbol table in which each atom occurs only once;
atoms in the program are replaced by their addresses in the symbol table.
This is called interning or tokenization of the atoms, and it is performed
whenever Prolog reads atoms and recognizes them as such — when loading
the program, accepting queries from the keyboard, or even accepting input
at run time with the read predicate. Whenever an atom exists, it is in the
symbol table.

Because of tokenization, a Prolog data structure can be much shorter than it
looks: repeated occurrences of the same atom take up little additional space.
Despite its appearance, the structure

f(’What a long atom this seems to be’,

’What a long atom this seems to be’,

’What a long atom this seems to be’)

is very compact — possibly smaller than g(aaaaa,bbbbb,ccccc). The mem-
ory representations of these two structures are shown in Figure 1.

Further, atoms can be compared more quickly than anything else except
numbers. To compare two atoms, even long ones, the computer need only
compare their addresses. By contrast, comparing lists or structures requires
every element to be examined individually.

Consider for example the following two tests:

a \= b

7

aaaaaaaa \= aaaaaaab

Without tokenization, the second test would take longer because it would be
necessary to compare eight corresponding characters instead of just one. In
Prolog, however, the second test is just as fast as the first, because all that
it does is verify that two addresses in the symbol table are different. The
strings aaaaaaaa and aaaaaaab were assigned to distinct addresses once and
for all when they were first tokenized.

6 Avoid string processing.

Character string handling is rarely needed in Prolog except to convert print-
able strings into more meaningful structures. The input to a natural language
parser, for instance, should be

[the,dog,chased,the,cat]

rather than

"the dog chased the cat"

so that the benefits of tokenization can be obtained.

Character strings in Prolog are bulky. Whereas abc is a single atom, the
string “abc” is a list of numbers representing ASCII codes, i.e., [97,98,99].
Recall that a list, in turn, is a head and a tail held together by the functor
‘.’, so that [97,98,99] is really .(97,.(98,.(99,[]))), represented internally
as shown in Fig. 2. Strings are designed to be easily taken apart; their
only proper use is in situations where access to the individual characters is
essential.

Arity/Prolog has an alternative type of string, written abc or the like, that
is stored compactly but not interned in the symbol table. This is important

8

because there is usually a limit on the number of symbols in the table; a
program with lots of textual messages can avoid hitting this limit by using
$-strings instead of long atoms.

The built-in predicate read tokenizes its input. Many implementations pro-
vide predicates that are like read except that they accept input from a list of
characters. With such a predicate, it is easy to preprocess a character string
to make it follow Prolog syntax, then convert it to a Prolog term.

7 Recognize tail recursion.

Because Prolog has no loop structures, the only way to express repetition
is through recursion. Variables that change value from one iteration to the
next must be passed along as arguments, thus:

count(N) :-

write(N), nl,

NewN is N+1,

count(NewN).

Recursion can be inefficient because, in general, each procedure call requires
information to be saved so that control can return to the calling procedure.
Thus, if a clause calls itself 1000 times, there will be 1000 copies of its stack
frame in memory.

There is one exception. Tail recursion is the special case in which control
need not return to the calling procedure because there is nothing more for
it to do. In this case the called procedure can be entered by a simple jump
without creating a stack frame.

Most Prologs recognize tail recursion and transform it into iteration so that
repeated execution does not consume memory. In Prolog, tail recursion exists
when:

1. the recursive call is the last subgoal in the clause;

9

2. there are no untried alternative clauses;

3. there are no untried alternatives for any subgoal preceding the recursive
call in the same clause.

Figure 3 shows a tail recursive predicate and three predicates that are not
tail recursive for different reasons.

A tail recursive predicate normally contains one or more tests to stop the
recursion. These must normally precede the recursive clause, thus:

count_to_100(X) :-

X > 100.

/* succeed and do nothing */

count_to_100(X) :-

X =< 100,

write(X), nl,

NewX is X+1,

count_to_100(NewX).

However, the recursive clause can be followed by other clauses if, at the time
of the call, they will have been ruled out by cuts or by indexing (see below).

The lack of conventional loop constructs is not a flaw in Prolog. On the
contrary, it makes it easier to prove theorems about how Prolog programs
behave. For years, mathematicians have dealt with repetitive patterns by
using inductive proofs — that is, by substituting recursion for iteration.
Prolog does the same thing. After years of using both Prolog and Pascal
almost daily, I find the Prolog approach to repetition less error-prone.

8 Let indexing help.

To find a clause that matches the query

10

?- f(a,b).

the Prolog system does not look at all the clauses in the knowledge base —
only the clauses for f. Associated with the functor f is a pointer or hash-
ing function that sends the search routine directly to the right place. This
technique is known as indexing.

Many implementations carry this further by indexing on not only the predi-
cate, but also the principal functor of the first argument. In such an imple-
mentation, the search considers only clauses that match f(a,. . .) and neglects
clauses such as f(b,c).

First-argument indexing is a trade-off. Its intent is to save execution time
and, even more importantly, to save memory by reducing the need to record
backtrack points. But the indexing process itself complicates the search by
requiring more analysis of the thing being searched for. Indexing on the
principal functor of the first argument represents a reasonable compromise.

Indexing has two practical consequences. First, arguments should be ordered
so that the first argument is the one most likely to be known at search time,
and preferably the most diverse. With first-argument indexing, the clauses

f(a,x).

f(b,x).

f(c,x).

can often be searched in one step, whereas the clauses

f(x,a).

f(x,b).

f(x,c).

always require three steps because indexing cannot distinguish them.

Second, indexing can make a predicate tail recursive when it otherwise would
not be. For example,

11

f(x(A,B)) :- f(A).

f(q).

is tail recursive even though the recursive call is not in the last clause, be-
cause indexing eliminates the last clause from consideration: any argument
that matches x(A,B) cannot match q. The same is true of list processing
predicates of the form

f([Head|Tail],...) :- ...

f([],...).

because indexing distinguishes non-empty lists from [].

9 Use mode declarations.

Normally, Prolog assumes that each of the arguments to a predicate may be
instantiated or uninstantiated. This results in compiled code that branches
to several alternative versions of each procedure in order to handle all the
combinations.

Most compilers provide a mode statement that allows you to rule out some of
the alternatives and thereby speed up execution. For instance, the predicate

capital_of(georgia,atlanta).

can be used with either argument instantiated, or both, or none, but if written
as

:- mode capital_of(+,-).

capital_of(georgia,atlanta).

12

it requires the first argument to be instantiated and the second to be unin-
stantiated.

Add mode declarations cautiously after the code has been debugged. At least
one manual warns ominously that if the mode declarations are violated, “In
some cases, the program will work. In others, your program will produce
erroneous results or not work at all.”

The ideal Prolog compiler would perform dataflow analysis and generate at
least some of its mode declarations automatically.

10 Work at the beginning of the list.

The only directly accessible element of a list is the first one. It pays to
perform all manipulations there and avoid, as far as possible, traversing the
whole length of the list.

Sometimes this entails building the list backward. After all, there is nothing
sacred about the left-to-right order in which lists are normally printed. For
example, a program that solves a maze might record its steps by adding them
at the beginning of a list. The result is a list giving the path, backward.

Working at the beginning of the list can really pay off in efficiency. A classic
example is a way of reversing a list. The familiar, inefficient “naive reverse”
predicate is the following:

reverse([],[]).

reverse([H|T],Result) :-

reverse(T,ReversedT),

append(ReversedT,[H],Result).

But reversing an N-element list this way takes time proportional to N 2.
One factor of N comes from the fact that reverse is called once for each list

13

element. The other factor of N comes from append(ReversedT,[H],Result)
because append has to step through all the elements of ReversedT in order
to get to the end and attach [H]. This takes time proportional to the length
of ReversedT, which in turn is proportional to N.

A faster way to reverse a list is to extract elements one by one from the
beginning of one list and add them at the beginning of another. This requires
a three-argument procedure, where the third argument is used to return the
final result:

fast_reverse(List1,List2) :-

fr(List1,[],List2).

fr([Head|Tail],SoFar,Result) :-

fr(Tail,[Head|SoFar],Result).

fr([],SoFar,SoFar).

The first clause of fr transfers the first element of [Head|Tail] to SoFar,
then calls itself to do the same thing again. When [Head|Tail] becomes
empty, the second clause of fr unifies SoFar with Result. The process takes
linear time.

11 Avoid CONSing.

In Prolog, as in Lisp, it is much easier to examine existing structures than
to create new ones. Creating new structures (known in Lisp as CONSing)
requires dynamic allocation of memory.

If, therefore, the same computation can be done with or without CONSing,
the version that avoids CONSing will be faster. Often, CONSing is avoided
simply by working at the beginning of the list. Sterling and Shapiro illustrate
this with two algorithms to test whether one list is a sublist of another.

14

Another way to avoid CONSing is to build structures by progressive instanti-
ation rather than by copying. Most Prolog predicates that modify structures
do so by building, from the original structure, a new one that is different in
some way; append, reverse, and similar list manipulations are familiar ex-
amples. The alternative is to add information to a structure by instantiating
parts of it that were originally uninstantiated.

For example, the list [a,b,c|X] can be turned into [a,b,c,d|Y], without
CONSing, simply by instantiating X as [d|Y]. Such a list, with an uninstan-
tiated tail, is called an open list. The same principle can be used to build
open trees and open data structures of other shapes.

The problem with [a,b,c|X] is that the only way to get to the X is to work
down the list starting at a. Although this does not require CONSing, it does
take time. Processing can go faster if another instance of X is kept outside
the list where it can be accessed directly. The resulting structure is called a
difference list and has the form

f([a,b,c|X],X)

where f is any two-argument functor; the infix operators / and - are often
used for the purpose, and the above list is written [a,b,c|X]-X or the like.

Difference lists can be concatenated very quickly — once — by instantiating
the tail of the first list to the whole of the second list. The first list then be-
comes the result of the concatenation; there is no third, concatenated, list to
be produced. This is the Prolog equivalent of the LISP function RPLACD. It
is somewhat less destructive because, like all Prolog instantiations, difference
list concatenations are undone upon backtracking.

12 Conclusion

All these techniques for improving efficiency share a common thread – aware-
ness of procedural aspects of a declarative language. This does not mean they
are all low-level, inelegant “tricks” that purists should ignore.

15

Some of the techniques are low-level, such as indexing and tail recursion
optimization. Prolog would still be Prolog if these features were eliminated
or changed radically. The decision to index on the principal functor of the
first argument is certainly arbitrary, and if indexing went away tomorrow,
some programs would lose efficiency but none would lose correctness.

Other techniques, however, are purely algorithmic. Even when stated declar-
atively, algorithms consist of steps, and one algorithm can have more steps
than another. It will always be faster to test the set-equivalence of lists by
sorting than by permuting, simply because there are too many permutations,
and no conceivable implementation can change this fact.

Between the two extremes are data-structure-dependent techniques such as
working at the beginning of a list. The first element of every list is the most
accessible, not because of some quirk of implementation, but because the
underlying semantics of Prolog says that [a,b,c] is really .(a,.(b,.(c,[]))).
An optimizing implementation might provide faster access to list elements
that are theoretically hard to get to, just as an optimizing Fortran compiler
can move certain statements outside of loops, but one should not rely on the
implementor to make the language more efficient than its semantics calls for.

Acknowledgement
I want to thank Don Potter for helpful suggestions. All opinions and errors
in this paper are of course my own.

References

[1] D.H.D. Warren and L.M. Pereira. “Prolog — The Language and its
Implementation Compared with Lisp,” ACM SIGPLAN Notices, Vol.
12, No. 8, August 1977, pp. 109–115.

[2] Quintus Prolog User’s Guide, Quintus Computer Systems, Mountain
View, Calif., version 11 for release 2.0, 1987, p. 98.

[3] Using the Arity/Prolog Interpreter and Compiler, Arity Corporation,
Concord, Mass., 1987, p. 104.

16

[4] ALS Prolog 1.2, Applied Logic Systems, Syracuse, N.Y., 1988.

[5] R.A.O’Keefe, “On String Concatenation,” Prolog Digest, Vol. 5, No.
100.

[6] Arity/Prolog 5.0, Arity Corporation, Concord, Mass., 1987.

[7] Building Arity/Prolog Applications, Arity Corporation, Concord, Mass.,
1986, p. 25.

[8] C.S.Mellish, “Some Global Optimizations for a Prolog Compiler,” Jour-
nal of Logic Programming, Vol. 2, 1985, pp. 43–66.

[9] S.K.Debray and D.S. Warren, “Automatic Mode Inference for Prolog
Programs,” Proceedings, 1986 Symposium on Logic Programming, IEEE
Computer Society, pp. 78–88.

[10] L.Sterling and E.Shapiro, The Art of Prolog: Advanced Programming
Techniques, M.I.T. Press, Cambridge, Mass., 1986, p. 194.

17

Figure 1.

Memory representations of two structures.

f(’What a long atom this is’,

’What a long atom this is’,

’What a long atom this is’)

f

What a long ...

Symbol Table

g(aaaaa,bbbbb,ccccc).

Symbol table

g

aaaaa

bbbbb

ccccc

ddddd

18

Figure 2.

Internal representation of the list [97,98,99] (equivalent to the string

"abc").

Symbol Table

97 98 99
[]

.

19

Figure 3.

Recursion does not consume memory if the recursive call is the very

last step of the calling procedure.

% This predicate is tail recursive

% and can run forever.

test1 :- write(hello), nl, test1.

% This predicate is not tail recursive

% because the recursive call is not last.

test2 :- test2, write(hello), nl.

% This predicate is not tail recursive

% because it has an untried alternative.

test3 :- write(hello), nl, test3.

test3 :- write(goodbye).

% This predicate is not tail recursive

% because a subgoal has an untried alternative.

test4 :- g, write(hello), nl, test4.

g :- write(starting).

g :- write(beginning).

20

