
Research Report AI��������

A Dependency Parser for
Variable�Word�Order Languages

Michael A� Covington

Arti�cial Intelligence Programs
The University of Georgia
Athens� Georgia ����	

A Dependency Parser for
Variable�Word�Order Languages

Michael A� Covington

Arti�cial Intelligence Programs
The University of Georgia
Athens� Georgia ����	

January 	� ����

�� Introduction
�� Variable word order� the problem
�� Dependency grammar �DG�
�� Uni	cation�based dependency grammar

� The parsing algorithm
�� The implementation
�� Evaluation of the IBM �
�
 environment
�� Remaining issues
�� Conclusions

� Introduction

This paper presents a new approach to the recognition of sentence structure by computer
in human languages that have variable word order� In a sense� the algorithm is not new

there is good evidence that it was known ��� years ago �Covington ��
��� But it has not
been implemented on computers� and the modern implementations that are most like it fail
to realize its crucial advantage for dealing with variable word order�� In fact� present�day
parsing technology is so tied to the �xed word order of English that researchers in Germany
and Japan customarily build parsers for English rather than their own languages�

The new algorithm uses dependency grammar� Unlike the more usual phrase structure gram�
mars� a dependency grammar does not divide the sentence up into phrases �constituents�

instead� it identi�es the grammatical relations that connect one word to another� This is

�Phyllis McLanahan provided invaluable assistance with Russian data� The early stages of this work
were supported by National Science Foundation Grant IST���������� The VM�Prolog implementation of
GULP was developed while visiting the Seminar f	ur natf	urlich
sprachliche Systeme� University of Tf	ubingen�
Norman Fraser and Richard Hudson provided valuable encouragement during the later stages of the project�
Responsibility for opinions and errors rests solely with the author�

�

advantageous in languages where the order of words is variable and many of the constituents
are discontinuous�

The algorithm presented here is implemented in Prolog on an IBM ���� and has been
used successfully to parse Russian and Latin sentences� The IBM ���� is well suited for
this and other applications in arti�cial intelligence and symbolic computing because of its
large address space� memory caching� and ability to prefetch along both alternatives of
a conditional branch� Performance is currently limited not by the hardware� but by the
VM�Prolog interpreter� which could be replaced by a considerably faster compiler�

� Variable word order� the problem

��� Most human languages have partly variable word order

Most of the languages of the world allow considerably more variation of word order than
does English� For example� the English sentence

The dog sees the cat�

has six equally grammatical Russian translations�

Sobaka vidit koshku�

Sobaka koshku vidit�

Vidit sobaka koshku�

Vidit koshku sobaka�

Koshku vidit sobaka�

Koshku sobaka vidit�

These di�er somewhat in emphasis but not in truth conditions� The subject and object
are identi�ed� not by their positions� but by their in�ectional endings ��a for nominative
case and �u for accusative�� By switching the endings� one can say �the cat sees the dog�
without changing the word order�

Sobaku vidit koshka� �etc��

	

The languages of the world can be ranked as to the amount of word order variability they
allow� For example�

Almost no variation� Chinese� English� French
Some variation� Japanese� German� Finnish
Extensive variation� Russian� Latin� Korean
Maximum variation� Walbiri �Australia�

Because Englih is at one end of the scale � permitting almost no word order variation �
it is a poor sample of a human language to do research on� A priori� one would expect that
parsing techniques developed solely for English might not work at all for other languages�
and might not be correct on a deeper level even for English� In what follows I shall argue
implicitly that this is the case�

��� Phrase�structure grammar �PSG� cannot handle variable word
order

Virtually all present�day linguistic theories analyze the sentence by breaking it into substrings
�constituents�� For example�

S
�����

PPPPP

NP
�
�
c
c

D

The

N

dog

VP
�
�
�

H
H
H

V

sees

NP
�
�
c
c

D

the

N

cat�

Here the dog is a noun phrase� sees the cat is a verb phrase� and the grammar consists of
phrase�structure rules �PS�rules� such as

S � NP � VP

NP � D � N

�

supplemented to some extent with rules of other types�

This approach has been highly successful with English� but it has trouble with variable
word order for two reasons� First� the order of the constituents is variable� Second� and
more seriously� variable word order often results in discontinuous constituents� Consider the
following sentence� from a short story by Lermontov�

khoroshaya u tebia loshad��
nom� pobj� nom�
good with you horse

��You have a good horse��
�lit� �A good horse is with you���

Here �good� and �horse� should� on any reasonable analysis� form a constituent� Yet �you��
which is not part of this constituent� intervenes� A phrase�structure tree for this sentence
would have crossing branches� which phrase�structure grammar disallows�

 S

 NP VP

 Adj PP N

P NP

khoroshaya u tebia loshad’

�Russian omits the word is � allowing a VP to consist of a bare predicative NP� PP� or AdjP��

Even the object of a preposition can be broken up� as in the example

�

PP

 P NP

 NP

 N

N

minuty cherez dve
gen. acc.
minutes within two

��within two minutes�
�lit� �within a pair of minutes��

from the same short story�

In Latin poetry� extremely scrambled sentences are common� For example�

S

VP NP

 V Adv

NP N

NAdj

Adj

ultima iam aetas
nom. gen. gen. nom.
last Cumean now has-come song age

venitCumaei carminis

� �The last epoch of the Cumean song has now arrived�
�Vergil� Eclogues IV���

Siewierska ���

� gives examples of discontinuity in Walbiri and other languages�

�

��� Scrambling transformations do not solve the problem

One way to handle discontinuous constituents is to write phrase�structure rules that gen�
erate them whole and then break them up with syntactic transformations or �scrambling
rules�� Twenty years ago� this was the preferred analysis �see e�g� Ross ������ But such a
theory claims that variable�order languages are intrinsically more complex than �xed�order
languages � in fact that a variable�order language is a �xed�order language plus a possibly
immense set of scrambling rules�

If this were so� one would expect languages burdened by word order variability to become
�simpler� �i�e�� more �xed� over time� but this does not necessarily happen� Though the Indo�
European languages are generally drifting toward �xed order� languages in other families�
such as Finnish� are developing more elaborate case systems that increase the possibilities
for word order variation�

Intuitively� word order variability may well be a simpli�cation of the syntax that is compen�
sated by a more elaborate morphology� That is� a variable� word�order language is one with
a lack of word�order rules� not a superabundance of them�

More importantly� a transformational analysis is worse than no help at all for parsing� Be�
cause transformations are tree�to�tree mappings� a parser can only undo a transformation
if it has already recognized �parsed� the tree structure that represents the output of the
transformation� That is� the only way to parse a transformed sentence is to undo the
transformation�but the only way to undo the transformation is to parse the sentence �rst�

��� ID�LP formalism cannot handle discontinuous constituents

Recently� several linguists have proposed handling variable word order by splitting phrase�
structure rules into two components� immediate dominance rules �ID�rules� that say what a
phrase consists of� and linear precedence rules �LP�rules� that state the order in which the
constituents appear�

ID�LP framework has been quite successful in capturing generalizations about word order
in �xed�order languages� Gazdar et al� ���
��� for instance� account for the whole of English
word order with just three LP rules�

Another claim often made for ID�LP formalism is that it accounts for word order variability�
If the relative order of a set of constituents is unstated by the LP rules� they are allowed to
occur in any order�

But this is not enough� Removing the LP rules merely allows reordering the elements within
each constituent� i�e�� the nodes immediately dominated by a single node� It still does not
account for discontinuous constituents� Faced with substantial word order variation� the

�

ID�LP grammarian must replace the transformationalist�s scrambling rules with ��attening
rules� that simply discard constituent structure and make nearly all words hang directly
from the S node�

Flattening was pioneered and then rejected by Uszkoreit ���
�a� ��
��� The problem is that
a ��at� structure is no structure at all � or to put it di�erently� a tree that shows all the
words hanging from the same node is not really a tree at all
 it claims only that the words
form a sentence� and begs the question of what relations interconnect them�

Because of this� ID�LP parsing algorithms such as those discussed by Evans ���
�� are not
adequate for variable word order languages� Nor is the variable�word�order ATN parsing
technique discussed by Woods ���
��� which is equivalent to a form of ID�LP grammar�

��	 Noncon
gurationality does not solve the problem

Chomsky ���
��� Hale ���
��� and others have split the languages of the world sharply into
two types� �con�gurational� languages� such as English� in which grammatical relations are
de�ned by tree structure and word order is �xed
 and �non�con�gurational� languages� such
as Walbiri� in which tree structure is less important and word order may or may not be
variable�

Like �attening� noncon�gurationality begs the question of how to represent structure in�
and how to parse� a non�con�gurational language� Kashket ���
�� has developed a free�
word�order parser consistent with Chomsky�s theories� but it works rather like a dependency
parser� searching through the input string for arguments of each word�

More importantly� many linguists remain unconvinced that there is a distinction between
con�gurational and non�con�gurational languages� Siewierska ���

� cites extensive evidence
that languages form a continuum from fully �xed to fully variable word order� with no sharp
transition from one type to the other�

��� Current parsing technology is limited by the limitations of
phrase�structure grammar

Almost all known parsing algorithms are based on constituency grammars� As a result�
they have trouble handling variable word order� The normal practice among researchers in
Germany and Japan is to build parsers for English � which �ts the constituency model
relatively well � rather than for their own languages� which do not �e�g�� Kolb ��
�� Mat�
sumoto et al� ��
�� Tomita ��
��� A business magazine recently reported that the Japanese
are developing successful computer programs to translate English into Japanese but cannot
go the other way because Japanese is much harder to parse �Wood ��
���

�

Constituency grammars are popular for parsing largely because they are easily modeled by
the context�free phrase�structure grammars �CF PSGs� of formal language theory� Thus
e�cient parsing algorithms are available and the complexity of parsing task is easy to study�

CF PSGs are not entirely adequate for human language� and linguists� concern has therefore
been how to augment them� The major augmentations include transformations �Chomsky
������ complex symbols �Chomsky ������ reentrant feature structures �Kaplan and Bresnan
��
	�� and slash features to denote missing elements �Gazdar et al� ��
��� Gazdar�s theory
claims as a triumph that it is closer to a CF PSG than any previous viable linguistic theory�

However� one should remember that formal language theory � the branch of mathematics
from which PSG came � has nothing to do with languages� i�e�� communication systems�
Formal languages are called languages only metaphorically �because they have grammars��
They are strings of symbols� and their most important use is to represent sequences of
operations performed by a machine� It is by no means obvious that formal systems developed
for this purpose should be immediately applicable to human languages�

A much more satisfactory approach is to admit that constituents are sometimes discontinu�
ous and to develop a suitable representation and parsing strategy� Recently� discontinuous
constituents have become an important issue in linguistic theory �Huck and Ojeda ��
���

The advantages of dependency parsers for dealing with discontinuity have not been generally
recognized� Early computational linguists worked with dependency grammars� but only in
forms that were easily convertible to PSGs and could be parsed by essentially the same
techniques �Hays and Ziehe ����� Hays ����� Bobrow ����� Robinson ������ Most present�
day dependency parsers impose an adjacency condition that explicitly forbids discontinuous
constituents �Starosta and Nomura ��
�
 Fraser ��
�
 Hudson ��
�
 but not Hellwig ��
�
and possibly not Jppinen et al� ��
� and Schubert ��
���

� Dependency grammar �DG�

��� Dependency grammar analyzes structure as word�to�word
links

The alternative to phrase structure grammar is to analyze a sentence by establishing links
between individual words� specifying the type of link in each case� Thus we might say that�
in �The dog sees a cat��

dog is the subject of sees

cat is the object of sees

the modi�es dog

a modi�es cat

or� speaking more formally�

dog depends on sees as subject

cat depends on sees as object

the depends on dog as determiner

a depends on cat as determiner

and sees is the head of the whole structure� since it does not depend on or modify any�
thing else�

This is dependency grammar� It has a long and distinguished history� having been used
by traditional grammarians at least since the Middle Ages �Covington ��
��� The �rst
modern treatment is that of Tesnire ������ ������ Present�day syntacticians who advocate
dependency grammar include Baum ������� Bauer ������� Hudson ���
�� ��
��� Tarvainen
���
	�� Shaumyan ���
���� Schubert ���
��� Mel�c�uk ���

�� Starosta ���

�� and Fraser
���
��� Moreover� as I shall point out below� the latest constituency grammars include
constraints that bring them closer to dependency grammar�

There are several ways to represent a dependency analysis graphically� We can annotate the
sentence with arrows pointing from head to dependent�

The big dog sees a little cat.

Or we can draw a �dependency tree� or D�tree� in which each head is represented by a node
placed higher than that of its dependents�

The big dog sees a little cat.

This is equivalent to�

�Shaumyan uses a combination of dependency and constituency representations�

�

The big

dog

sees

a little

cat

Following Tesni�ere� we can make the tree neater by discarding the information about word
order and centering each node above its dependents�

dog

sees

the big

cat

a little

This� in turn� can be represented in outline�like form using indentation rather than lines to
indicate hierarchy�

sees

dog

the

big

cat

a

little

This last notation is particularly convenient for computer output� It requires no line drawing�
and annotations can be printed after each word�

��� Modern linguistic theories are evolving toward dependency
grammar

Every dependency analysis that speci�es word order is equivalent to a constituency analysis
that ��� has no labels or features on nonterminal nodes� and �	� picks out one node as the
�head� of each phrase �Hays ����� Gaifman ����� Robinson ������

To see the equivalence� observe that the D�tree

a c b

��

can be converted into the constituency tree�

a b c

which has the same branching structure� To convert this back into the D�tree without loss of
information� we must know whether b or c is the head of the constituent bc
 if we incorrectly
take c as head� we will get the incorrect D�tree�

a b c

It is obvious that a is the head of the larger constituent because only an individual word�
not a phrase� can be a head�

Moreover� the D�tree has no nodes separate from the words themselves� whence the require�
ment that the corresponding constituency tree contain no features or other information on
non�terminal nodes �unless of course it is copied unchanged from terminal nodes��

Most present�day syntactic theories have adopted essentially these restrictions� Jackendo�
������ promoted the concept that every phrase has a head which is a single word� He pointed
out that a PS�rule such as

noun phrase � verb � adverb

ought to be impossible even though classical transformational grammar permits it�

Intuitively� every noun phrase must contain a noun� every verb phrase must contain a verb�
and every prepositional phrase must contain a preposition � or more generally� every X
phrase must contain an X� Jackendo��s X�bar theory� which formalizes these intuitive con�
straints and de�nes a head for every phrase� has been accepted without controversy by sub�
sequent workers in several di�erent theoretical frameworks �Chomsky ��
�� Bresnan ��
	�
Gazdar et al� ��
����

Likewise� it is uncontroversial that most� if not all� of the features on phrasal nodes should
be copied from their heads� �A plural noun phrase is headed by a plural noun
 a singular
verb phrase is headed by a singular verb
 and so on�� Indeed� Gazdar et al� ���
�� have a
rule� the Head Feature Convention� to ensure that this is so� This is almost equivalent to not

�Admittedly� X
bar theory distinguishes multiple levels of phrasal structure� which dependency grammar
cannot do� However� these multiple levels have become less popular in recent work �compare Jackendo
 ����
to Radford ������

��

making a distinction between the phrasal node and the head of the phrase �e�g�� the noun
and the noun phrase of which it is the head��

Finally� the latest syntactic theories put less and less emphasis on trees as a representa�
tion of structure� The emphasis is shifting toward the grammatical relations that link the
head of a phrase to the other constituents of the phrase� Examples of this approach in�
clude lexical�functional grammar �Kaplan and Bresnan ��
	�� Chomsky�s theory of govern�
ment and binding ���
��� head� driven phrase�structure grammar �Sag ��
��� and categorial
grammars �Bouma ��
�� Uszkoreit ��
�c� Flynn ��
�� Steedman ��
���

Signi�cantly� Uszkoreit argues that the constituents de�ned by categorial rules need not be
continuous� and Bouma speci�cally addresses the Australian language Walbiri �Warlpiri��
whose word order is extremely variable�

� Uni�cation�based dependency grammar

��� Dependency is a theory�dependent concept

The relation of head to dependent corresponds roughly to two concepts already well devel�
oped in grammatical theory�

��� The dependent presupposes the presence of the head� That is� adjectives depend on
nouns� not vice versa� Verbs are heads and their subcategorized arguments �subject� object�
etc�� are their dependents�

�	� Semantically� functors are heads and arguments are dependents� That is� if the meaning
of word X is incomplete without the meaning of word Y� but not vice versa� then X is the
head and Y is the dependent� For example� the subject and object are dependents of the
verb�

As Gazdar et al� ���
���
����	� have shown� this does not settle the issue� because in a
semantics that includes partial functions� the choice of functor and argument is somewhat
arbitrary�

In the past� dependency grammarians have tried to �nd some single observable property� such
as optionalness� that distinguishes head from dependent in all constructions� My position
is that this is a mistake� Dependency is a theoretical abstraction� and its identi�cation
depends on multiple criteria
 questions about it should be resolved in the way that best
captures syntactic and semantic generalizations�

�	

��� D�rules specify possible relations

Following Miller ���
��� I formalize a dependency grammar by writing �D�rules�� i�e�� rules
that allow one word to depend on another� However� instead of using symbols like N and
V for noun and verb� I use feature structures in the tradition of uni�cation�based grammar
�Shieber ��
���

Thus the relation of noun to adjective in Russian or Latin is described by the following rule�
where G� N� and C are variables�

�
����
category�noun
gender�G
number�N
case�C

�
���� ��

�
����
category�adj
gender�G
number�N
case�C

�
����

That is� �A word with category adj� gender G� number N� and case C can depend on a word
with category noun� gender G� number N� and case C��

This rule does not specify word order
 in the rule� the head is always written �rst� First
approximations to some other rules used by the parser are as follows�

Verb and subject�

�
�� category�verb
number�N
person� P

�
�� ��

�
�� category�noun
number�N
person� P

�
��

Verb and object�

h
category�verb

i
��

�
category�noun
case�acc

�

Preposition modifying verb�

h
category�verb

i
��

h
category�prep

i

Preposition and object�

��

�
category�prep
objcase�C

�
��

�
category�noun
case�C

�

These rules of course ignore many details�

��� Uni
cation builds and tests structures order�independently

This formalization relies crucially on uni�cation �matching and�or merging� of feature struc�
tures� The power of uni�cation comes from its ability to build complex objects through
order�independent operations�

Each of the feature structures in the rules above is only partly instantiated � that is� the
values of most features are unspeci�ed� They will become instantiated through matching�
Crucially� an uninstantiated feature has no value
 it is not equivalent to a feature whose
value is � or nil�

Two feature structures unify if ��� the features within them that are already instantiated
have matching values� and �	� every feature that is instantiated in one structure but not
in the other becomes instantiated to the same value in both structures� Thus a feature
structure is built up with information acquired from many sources � some of it from the
lexicon and some from every D�rule that successfully applies to it�

The value of a feature can itself be a feature structure� in which case the matching criterion
applies recursively�

Uni�cation is a process that succeeds or fails� If the grammar requires two structures to
unify and they cannot be uni�ed� the utterance is ungrammatical� i�e�� it is not generated or
parsed by the grammar�

The result of unifying a set of structures is the same regardless of the order in which the
uni�cations are performed� This means that� in a uni�cation� based grammar or computing
system� many di�cult questions about the order of operations simply fail to arise� The power
of uni�cation comes from its ability to make the most of whatever information is available at
a particular time� �lling in missing details �or even missing superstructures� when it becomes
possible to do so�

For example� a transformational grammar might copy a feature from one location to another�
This implies that the feature is in its original location before the copying takes place� A
uni�cation�based grammar� by contrast� will merge features in two locations �whether or
not either one has been given a value� and� either beforehand or afterward� give a value to
one of them� The question of which comes �rst� instantiation or copying� is irrelevant if not
meaningless�

��

��� Representations of meaning are easy to build

The uni�cation process can easily build semantic representations as it goes� Consider for
example the D�rule

�
����
category�verb
number�N
person�P
semantics�X�Y�Z�

�
���� ��

�
����
category�noun
number�N
person�P
semantics�Y

�
����

This is just the subject�verb rule above with a crude semantic representation added�

Suppose this D�rule applies to the two words

�
������

form�vidit
category�verb
number��
person��
semantics�sees�U�V�

�
������ ��

�
������

form�sobaka
category�noun
number��
person��
semantics�dog

�
������

Uni�cation will give the following values to the variables�

N�� P�� X�sees Y�U�dog V�Z

and as a result the semantics feature of vidit will have the value sees�dog�V�� where V will
get a value through further uni�cation when the rule applies that introduces the object�

This is far from a complete theory of meaning� and the reader is referred to Shieber ���
��
and to Gazdar et al� ���
�� for further discussion of semantics in uni�cation�based grammar�
The point here is simply that semantics in a dependency grammar can use mechanisms that
have already been extensively developed for uni�cation�based phrase�structure grammar�

��	 The meaning representation can ensure that obligatory de�
pendents are present

Any dependency grammar must distinguish between optional and obligatory dependents�
For instance� in English� the subject of the verb is obligatory but the adverb of manner is
not��

�Asterisks denote ungrammatical examples�

��

John came�
John came quickly�
�Came�
�Came quickly�

Moreover� if an argument is obligatory it is also unique� a verb may take several adverbs but
it must have one and only one subject�

John invariably came quickly�
�John Bill Harry came�

Obligatoriness of arguments is most easily handled through the mechanism that builds rep�
resentations of meaning� After all� in the meaning� each verb can have only one value in each
argument position
 this ensures there will never be two subjects or two objects on a single
verb�

To this one can add a requirement that the complete semantic representation� once built�
must not contain any uninstantiated argument positions� This� in turn� will ensure that all
the necessary arguments � subject� object� and the like � are present�

The list�valued subcat or syncat features of Shieber ���
�� and others cannot be used to
handle subcategorization in dependency grammar� because each D�rule brings in only one
argument� Nor are the lists appropriate for a variable�word�order language� since the argu�
ments are distinguished by in�ectional form rather than by their proximity to the verb�

��� Restrictions can be imposed on word order

Even a variable�word�order language has some constraints on word order� For example� in
Russian and Latin� the preposition must precede its object� In the sentence

devushka
nom�
girl

kladyot

puts

knigu
acc�
book

na

on

gazetu
acc�
newspaper

the object of na must be gazetu� not knigu� even though both are in the correct case� That
is� the preposition can only combine with a noun that follows it�

We can handle this by annotating the preposition�object rule as �head �rst�� i�e�� the head
must precede the object� Rules are likewise allowed to be annotated �head last�� and such
rules will be common in Japanese though I know of none in Russian or Latin�

��

Further� the prepositional phrase must be continuous
 that is� all the direct or indirect
dependents of the preposition must form a continuous string� Thus in

devushka
nom�
girl

kladyot

puts

na

on

gazetu
acc�
newspaper

knigu
acc�
book

the object of na must be gazetu� not knigu
 the verb can be separated from its object but
the preposition cannot� �Recall that in the example minuty cherez dve above� it was the NP�
not the PP� that was discontinuous��

The prototype parser does not handle contiguity requirements� One way of doing so might
be to endow the preposition �for example� with a feature contig that is copied recursively to
all its dependents� and then insist that the whole string of words bearing the same value of
this feature be contiguous�

Hudson ���
�� has shown that dependency grammars with su�cient contiguity and word
order requirements can handle �xed�order languages such as English�

	 The parsing algorithm

	�� The parser accepts words and tries to link them

Unlike other dependency parsers� this parser does not require constituents to be continuous�
but merely prefers them so�

The parser maintains two lists� PrevWordList �containing all words that have been accepted
from input� and HeadList �containing only words that are not dependents of other words��
These are initially empty� At the end� HeadList will contain only one word� the head of the
sentence�

Parsing is done by processing each word in the input string as follows�

��� Search PrevWordList for a word on which the current word can depend� If there is one�
establish the dependency
 if there is more than one� use the most recent one on the �rst try

if there is none� add the current word to HeadList�

�	� Search HeadList for words that can depend on the current word �there can be any
number�� and establish dependencies for any that are found� removing them from HeadList
as this is done�

��

This algorithm has been used successfully to parse Russian and Latin� To add the adjacency
requirement� one would modify the two steps as follows�

��� When looking for the word on which the current word depends� consider only the previous
word and all words on which it directly or indirectly depends�

�	� When looking for potential dependents of the current word� consider only a contiguous
series of members of HeadList beginning with the one most recently added�

With these requirements added� the algorithm would then be equivalent to that of Hudson
���
���

	�� The parser prefers continuous phrases but does not require
them

Comparing the two algorithms just given� it is obvious that the parser for continuous con�
stituents is a special case of the parser for discontinuous constituents� and that� in fact� it
usually tries the parses that involve continuous constituents �rst�

This strategy makes the parser�s preferences resemble those of human beings in two respects�

First� even when discontinuous constituents are allowed� the parser has an easier time parsing
continuous ones� Analogously� human languages that allow discontinuity usually do not
indulge heavily in it� unless for poetic e�ect or some other special communicative purpose�

Second� because of its search strategy� the parser adheres to the psycholinguistic principle
that near attachments are preferred �Frazier ��
��� Consider Frazier�s example sentence Ken
said Dave left yesterday� Hearers prefer to interpret this as

Ken said Dave left yesterday.

with yesterday modifying left � rather than

Ken said Dave left yesterday.

with yesterday modifying said�

�

The parsing algorithm has the same preference� Both HeadList and PrevWordList are
searched beginning with the most recently added element� Thus the parser follows the
strategy

Attach each word to the nearest potential head or dependent�

This is the dependency�grammar counterpart of Frazier�s principle� which says

Attach each node to the node currently under consideration if possible�

Ueda ���
�� has argued on independent grounds that this principle applies to Japanese� a
variable�word�order language�

	�� Unavoidably� parsing discontinuous constituents is complex

It is well known that phrase�structure parsing of an n�word sentence with the most e�cient
algorithm takes� at most� time proportional to n�� The same is true� in principle� of depen�
dency parsing with a dependency grammar that is convertible to a phrase�structure grammar
� i�e�� one that does not allow discontinuity�

Parsing with discontinuity is unavoidably more complex� After all� it allows more possibili�
ties
 the parser can never be completely sure that a constituent is over or that a subsequent
constituent has not yet begun� An exact analysis has not yet been carried out� but complexity
of parsing with discontinuity may� in the worst case� be as high as nn�

Three things should be emphasized� First� the extra complexity comes from allowing discon�
tinuous constituents� not from using dependency grammar� Discontinuous constituents are
necessary in some human languages� and hence unavoidable� Second� as will be shown below�
worst�case complexity is irrelevant to natural language processing� Third� the complexity
can be reduced by putting arbitrary limits on how far away from the current word a head
or dependent can be sought� There is every reason to believe that the human brain imposes
such limits on hearers� ability to understand speech� and therefore that all human languages
are thus constrained�

	�� With ambiguity and features� natural language parsing is
NP�complete

Barton� Berwick� and Ristad ���
��
����� prove that parsing is NP�complete in any phrase
structure grammar that includes ��� agreement features that are copied from some nodes to
others �like the agreement of subject and verb in natural language�� and �	� lexical ambiguity

��

�the ability to rewrite more than one complex terminal symbol as the same surface form��
They do this by reducing �SAT �a well�understood theorem proving problem� to a parsing
problem for such a grammar�

The dependency grammars proposed here have agreement features and lexical ambiguity�
Although the details have not been worked out� it should be obvious that the same reduction
can be carried out for a dependency grammar that has order and contiguity requirements�
In this respect� dependency parsing is no better and no worse than phrase structure parsing�

	�	 Average�case performance is what matters

The Barton�Berwick�Ristad proof indicates that all adequate natural� language parsing al�
gorithms have the same worst�case complexity� i�e�� they are NP�complete �unless of course
some of them turn out to be worse�� Fortunately� worst cases in natural language are quite
rare� They do exist
 an example is the English sentence

BUFFALO BUFFALO BUFFALO BUFFALO BUFFALO

which has the same structure as �Boston cattle bewilder Boston cattle�� Once given the
structure� human beings have no di�culty interpreting the sentence and seeing that it is
grammatical� though they �nd it extremely di�cult to discover the structure without help�

The moral is that even the parsers in our heads do not perform well in the worst case�
Average�case complexity is much more important� One way of limiting the average�case
complexity of dependency parsing is to place a limit on� for example� the maximum size
of HeadList and�or PrevWordList� This will prohibit massive inversions of word order and
wide separation of related constituents � exactly the things that are rare or impermissible
even in free�word�order languages�

 The implementation

��� The parser is written in IBM VM�Prolog

The present implementation uses IBM VM�Programming in Logic ��VM�Prolog� for short�
on the IBM ���� Model ����	VF at the University of Georgia� It uses the IBM �Mixed� syn�
tax� which closely resembles the standard Edinburgh dialect of Prolog described by Clocksin
and Mellish ���
���

Prolog is usually thought of as a language for automated reasoning and expert systems
�Kowalski ����� Walker ��
��� Nonetheless� it originated as a language for writing parsers

	�

�Colmerauer ����� and remains eminently suited for this purpose�

Three factors make Prolog ideal for natural language processing� First� Prolog is a language
for data as well as operations� Every data object that can exist in the language has a written
representation�� Complex data structures can be created gradually and straightforwardly�
with no need to declare them in advance or perform system calls to allocate memory� Lisp�like
lists� decomposable into head and tail� are one of the many structuring devices available�

Second� Prolog is designed to consider multiple alternative paths of computation� Parsers
typically have to try many alternatives in order to parse a sentence successfully� and in
Prolog this is almost automatic� A procedure can be given multiple de�nitions to express
alternative ways of solving a problem� Every computation either succeeds or fails� and if a
computation fails� execution backs up to the most recent untried alternative and proceeds
forward again� The programmer can put in instructions ��cuts�� to suppress backtracking
where it is not wanted�

Third� a form of uni�cation is built into Prolog� Prolog uni�cation is not identical to feature
structure uni�cation� but the basic idea is the same� make the structures alike by instan�
tiating �giving values to� variables� For example� the list �a�b�X� can unify with �Y�b�c�

with the instantiations X�c� Y�a� However� �X�b�X� cannot unify with �a�b�c� because X
cannot take on two values at once�

��� GULP extends Prolog by adding feature structure uni
ca�
tion

Prolog uni�cation di�ers from feature structure uni�cation in one crucial way� Prolog identi�
�es corresponding features by position� whereas in feature structures� features are identi�ed
by name�

This is a substantial obstacle for implementing uni�cation�based grammars� The grammat�
ical theory requires that any feature structure should be uni�able with any other unless
feature values prevent it� This means every feature structure must reserve a position for ev�
ery feature that occurs in the grammar� even though only one or two of them are mentioned
in any speci�c instance� To represent

�
case�nom
num�sing

�

the programmer has to write something like

�Except for certain pathological structures that contain pointers to themselves� These structures are not
normally created and some Prolog implementations treat them all as runtime errors�

	�

�V��V��V��V��V	�V
�nom�V��V��V�
�V���sing�V���V���V�	�

if the grammar uses a total of �� features� Typographical errors are inevitable�

There are two ways out of the dilemma� modify the Prolog uni�er� or modify Prolog syntax�
If the uni�er were modi�ed� it would be possible to write something like �case�nom��num�sing��
and have the uni�er �gure out that� for example� this is supposed to match �num�N��case�nom��pers�����
The trouble is that this approach really slows down the program
 all the extra work has to
be done at run time whenever a uni�cation is attempted�

GULP �Covington ��
�� ��
�� is an extension of Prolog that modi�es the syntax instead�
The programmer writes feature structures such as��

case � nom �� num � sing

and GULP preprocesses the Prolog program to convert these into list�like structures in
which features are identi�ed by position rather than by name� The value of a feature can
be any Prolog object� including another feature structure� A routine is provided to display
feature structures in a neatly indented style�

��� The implementation consists of a grammar� a lexicon� and a
parser

����� Feature set

In the prototype parsers for Russian and Latin�� Each word is represented by a feature
structure� The features used are�

phon � The phonological or orthographic form of the word�

cat � The syntactic category �noun� verb� etc���

case� num� gen� pers � Grammatical agreement features �case� number� gender� and per�
son�� For brevity� case is used on the preposition to mark the case required in the
object
 this lacks generality� because other words �e�g�� participles or the adjective
�similar�� can be in one case while taking a complement in another�

�In the original ASCII version of GULP� case�nom �� num�sing� The colon is already used for another
purpose in VM�Prolog and although VM�Prolog is highly modi�able� the requisite moidi�cations have not
yet been done�

�Only the Russian parser runs on the ����� the Latin parser runs �considerably lower�� on a PS�� Model
�� using ALS Prolog�

		

id � An identifying number assigned to each word in the input string so that separate
occurrences of the same word form will not unify with each other�

subj� obj � If the word is a verb� these become instantiated to the values of the id features of
its subject and object respectively� These are merely stand�ins for argument positions
in the semantic component that has not been implemented�

gloss � An English translation of the word� for annotating output�

gr � The grammatical relation borne by the word to its head �subject� object� modi�er�
etc��
 for annotating output� This identi�es the D�rule that was used to establish the
relationship�

dep � An open list �i�e�� a list with an uninstantiated tail� containing pointers to the full
feature structures of all of the word�s dependents� The whole dependency tree can be
traced by recursively following the dep feature of the main verb�

����� Lexical entries

Since this parser was built purely to examine a syntactic problem� its lexical component
ignores morphology and simply lists every form of every word� Part of the lexicon is shown
in Listing � �at the end of this paper�� In conventional notation� the lexical entry for Russian
sobaka� for example� is�

�
��������

phon�sobaka
cat�noun
gloss��dog�
case�nom
num�sg
gen�fem

�
��������

On input� a string of words is converted by the lexical scan procedure into a list of feature
structures� each of them only partly instantiated� �For instance� the id and dep features are
not instantiated in the structure above�� The parser instantiates the structures further as it
does its work�

����� D�rules

D�rules are stored as Prolog clauses with the principal functor ����� which is written between
two feature structures� Recall that a feature structure is a series of feature�value pairs linked
by ���� and a feature is linked to its value by ���� Using all these notational devices� the

	�

adjective�noun rule

�
����
category�noun
gender� G
number�N
case�C

�
���� ��

�
����
category�adj
gender� G
number�N
case�C

�
����

would be written in Prolog as�

cat�noun �� gen�G �� num�N �� case�C

�� cat�adj �� gen�G �� num�N �� case�C�

The complete set of D�rules is shown in Listing 	�

����� Parsing process and output

The parser implements the algorithm described in section ��� above� Crucially� HeadList
and PrevWordList are really lists of pointers� The same word can appear in both lists� and
when this happens� there is actually only one copy of the word in memory� Thus its features
can be instantiated regardless of which list the word was accessed through� At the end�
HeadList has only one element� the main verb�

Figure � shows a sample of the parser�s output� which is displayed by following the dep
features from word to word to obtain the complete dependency network� The values of the
phon� gloss� and gr features are displayed for each word�

Because it is written in Prolog� the parser automatically has the ability to backtrack and
try alternatives� In Figure �� this is put to good use to �nd two parses for an ambiguous
sentence�

� Evaluation of the IBM ��
� environment

�� Parsing �and natural language processing generally� have
speci
c machine requirements

Parsing is one of many applications that fall into the realm of symbolic computing because the
objects manipulated are not numbers� nor character strings� but rather abstract symbols to
which the programmer assigns a meaning� The leading languages for symbolic computation

	�

are Prolog and Lisp� Symbolic computation can be done in many other languages� but it is
cumbersome�

Symbolic computation requires the ability to create complex data structures of arbitrary
shape at run time � parse trees� feature structures� nested lists� and the like� Necessarily�
such structures occupy noncontiguous memory locations and are held together by point�
ers� For example� the simplest way to represent the list �a � �b � �c � nil��� �more
commonly written �a�b�c�� is the following�

a b c nil

This preserves the essential properties of the list� it can be recognized and processed one
element at a time� without knowing the total length
 it can be broken into head and tail at
any point
 and if the last link is uninstantiated� the list can be lengthened by instantiating
it� �Prolog actually uses a more complex representation of a list with additional pointers to
the dot��

Far from wasting time� pointer references normally speed up symbolic computation� The
reason is that it is faster to compare pointers to atomic symbols than to compare the symbols
themselves� Accordingly� it is standard practice to tokenize all programs and data� i�e��
replace all atoms with pointers to a symbol table�

The execution of a symbolic program consists largely of pointer dereferencing� comparisons�
and conditional branches� There is very little arithmetic
 the objects being processed are
not numbers� and even their addresses are not calculated but rather looked up via pointers�

These requirements are not artifacts of using Prolog or Lisp
 they are imposed by the ap�
plications� Small non�numeric programs� including some compilers� have been written using
conventional data structures �arrays� character strings� etc��� but for larger applications� the
advantages of symbolic computation are overwhelming� This is particularly the case in pars�
ing natural language because� unlike a programming language� English cannot be designed
to �t a simple transition network or require only one character of lookahead�

�� The IBM ���� is well suited to symbolic computing

The IBM ���� is a promising machine for symbolic computing because� compared to other
supercomputers� it is much less narrowly specialized for non�symbolic applications� By
contrast� other supercomputers are specialized for vector arithmetic �Cray��� ETA���� or
for multiprocessing with relatively small amounts of fast memory on each CPU �Intel iPSC�

	�

Control Data CYBERPLUS
 see Stearns and Covington ��
���

By contrast� the IBM ���� re�ects the System���� and System���� heritage of design for
all�purpose computing �Padegs ��
�� Tucker ��
��� Some of its �super� features are designed
to speed up all types of programs� not just numeric applications� Perhaps more importantly�
the ���� imposes no penalty for the use of instructions for which it was not speci�cally
optimized�

Symbolic computing� and especially natural language processing� requires a machine with
large memory� fast access to arbitrary non�consecutive memory locations� and the ability to
execute conditional branches rapidly�

The IBM ���� meets all these requirements� At the University of Georgia� a program can
run in a ����megabyte virtual memory region if needed� The prototype parser uses only �
megabytes and could probably get by with less� but it is only a small part of a foreseeable
integrated natural language processing system� �Natural language processing is not an end
in itself � it will ultimately be the user interface to some other application� which needs
space of its own to run in��

The large address space of the ���� and the ease of access to non�contiguous locations
facilitate the use of the data structures needed in symbolic computation� Non�contiguity of
memory locations is no impediment to caching� This is important because data structres are
allocated piece by piece and accessed by pointers� There are no arrays or vectors in Prolog�
and arrays are uncommon in other symbolic processing languages�

Finally� the ���� instruction pipeline can prefetch along both alternatives of a conditional
branch instruction� This is important because parsing consists largely of decision making

prefetching speeds up execution considerably�

�� VM�Prolog is fast� but a much faster Prolog is possible

VM�Prolog is an interpreter� not a compiler� It was designed for versatility� not speed� and is
respectably fast� but it dates from the �rst generation of full�featuredProlog implementations
in the mid���
�s� Prolog implementations for other CPUs have advanced considerably since
then� Table � �at the end of this paper� shows that� on an IBM PS�	� there is a factor of 	�
di�erence in speed between interpreted and compiled Prolog� Whether a comparable speedup
could be achieved on the ���� is uncertain� but there is clearly room for improvement� The
internals of the present interpreter have not been made public� but the interpreter may gain
some of its speed from a tight inner loop that resides entirely in the ��K cache�

Even so� a compiler has to be faster than an interpreter� If a good compiler were available�
and the speedup factor were indeed �� to 	�� then the ���� would execute Prolog� not at
��� kLIPS �which is itself impressive�� but at an unprecedented speed of � to �� megaLIPS�

	�

� Remaining issues

��� Dependency is problematic in some constructions

There are constructions in which it is not clear which word is the head and which is the
dependent� Prepositional phrases are an example� In a sentence like He came after lunch� it
makes sense to treat after as a modi�er of the verb �it says he came after something�� and
lunch as a required dependent of after �

But in some constructions the preposition seems to be much more tightly bound to the
noun� For example� in Spanish the direct object of the verb is sometimes marked with the
preposition a �which in other contexts means �to��� Does such a direct object depend directly
on the verb � in which case the preposition depends on the noun� rather than vice versa �
or do Spanish verbs sometimes take a preposition instead of a noun as direct object

There are other problematic constructions� Is the verb the head of the sentence We have
assumed so� but there is a time�honored traditional analysis that treats the subject rather
than the verb as the head �Covington ��
��� And what about relative clauses and other
embedded sentences

Fortunately� none of these problems is daunting� The question is which is the best analysis�
not whether there is a possible analysis� In any case� the same questions of headship arise
within X�bar theory and are the object of vigorous research e�orts there �see e�g� Radford
��
���

��� Conjunctions are problematic for both DG and PSG

Conjunctions pose a special problem� In a sentence like Joe and Max arrived� the verb seems
to have two subjects� Intuitively� Joe and Max forms a single unit that serves as the subject�
But dependency grammar cannot describe this unit
 dependency grammar can only connect
the verb to one single word� Phrase�structure grammar seems to have the upper hand�

But Hudson ���

� has shown that PSG is not much better o� than DG� Consider for
example the sentence

John drank co�ee at breakfast and tea at lunch�

Here and joins co�ee at breakfast with tea at lunch� Yet neither co�ee at breakfast nor tea
at lunch is a constituent or a grammatical unit� No reasonable constituency analysis comes
out any better than dependency grammar�

From this� Hudson argues that conjunctions license doubling up of grammatical relations �

	�

that is� because of and� the verb can take two objects and two prepositional phrases� instead
of just one of each� Clearly� this analysis works just as well in DG as in PSG�

The alternative is to argue that� at least some of the time� conjunctions show the e�ect of
a post�syntactic operation on the string of words � some kind of ellipsis or rearrangement
not based on grammatical relations� analogous to the insertion of parenthetical remarks�

��� Word order variation a�ects emphasis and cohesion

As Karttunen and Kay ���
�� have noted� word order is signi�cant even when it is variable�
The �rst element in the sentence is most likely to be the topic �the continuing concern of
the discourse�� and new information is introduced later in the sentence�

A dependency parser can easily keep track of the actual word order� or the position of various
words relative to each other� by means of additional features� The semantic component of
the grammar can use these features to identify topic and comment and to recognize other
e�ects of word order�

 Conclusions

Variable�word�order parsing is an important but neglected problem
 progress on it is nec�
essary if natural language processing is ever going to deal with a wide variety of languages
other than English� The work reported here has shown that dependency parsing is a feasible
approach to the handling of variable word order� The apparently high worst�case compu�
tational complexity of dependency parsing is not an objection because average�case rather
than worst� case complexity is what matters
 even the human brain does not process �worst
cases� successfully�

The technique presented here derives much of its power from uni�cation� based grammar�
a formalism developed to augment phrase�structure grammar but equally applicable to de�
pendency grammar� By unifying feature structures� the grammar can build representations
of syntax and meaning in a powerful� order� independent way�

Some questions remain to be answered� such as how to handle conjunctions and subordinate
clauses in dependency grammar � but the work of Hudson� Starosta� and others has shown
that satisfactory treatments are possible� and the question is now which analysis is best�
rather than whether a satisfactory analysis can be obtained�

References

	

Barton� G� E�
 Berwick� R� C�
 and Ristad� E� S� ���
�� Computational complexity and
natural language� Cambridge� Massachusetts� MIT Press�

Bauer� L� ������ Some thoughts on dependency grammar� Linguistics �� �new series� ����
����

Baum� R� ������ �Dependenzgrammatik�� Tesni	eres Modell der Sprachbeschreibung in wis

senschaftsgeschichtlicher und kritischer Sicht� �Zeitschrift f!ur romanische Philologie�
Beiheft ����� T!ubingen� Max Niemeyer�

Bobrow� D� G� ������ Syntactic theories in computer implementations� Automated language
processing � ed� H� Borko� 	���	���

Bouma� G� ���
�� Kategoriale grammatiek en het Warlpiri� Glot
�		��	���

Bresnan� J� ���
	a� Control and complementation� Bresnan ��
	b�	
	�����

Bresnan� J�� ed� ���
	b� The mental representation of grammatical relations� Cambridge�
Massachusetts� MIT Press�

Chomsky� N� ������ Syntactic structures� The Hague� Mouton�

� ������ Aspects of the theory of syntax� Cambridge� Massachusetts� MIT Press�

� ���
�� Lectures on government and binding� Dordrecht� Foris�

Clocksin� W� F�� and Mellish� C� S� ���
�� Programming in Prolog� Berlin� Springer�

Colmerauer� A� ������ Les Systemes
Q ou un formalisme pour analyser et synth�etiser des
phrases sur ordinateur� Publication interne No� ��� D"epartement d�Informatique�
Universit"e de Montr"eal�

Covington� M� A� ���
�� Syntactic theory in the High Middle Ages� Cambridge University
Press�

� ���
�� GULP ���� an extension of Prolog for uni�cation
based grammar� Research report
�����	�� Advanced Computational Methods Center� University of Georgia�

� ���
�� GULP
��� an extension of Prolog for uni�cation
based grammar� Research report
AI���
����� Arti�cial Intelligence Programs� University of Georgia�

Covington� M� A�� and Vellino� A� ���
�� Prolog arrives� PC Tech Journal ������	����

Evans� R� ���
�� Direct interpretations of the GPSG formalism� J� Hallam and C� Mellish�
eds�� Advances in arti�cial intelligence �Proceedings of the ��
� AISB conference��
Chichester� Wiley�

Flynn� M� ���
�� Categorial grammar and the domain speci�city of universal grammar�
Gar�eld ��
�������
��

Fraser� N� M� ���
�� Parsing and dependency grammar� UCL Working Papers in Linguistics �
vol� �� 	������� University College London�

Frazier� L� ���
�� Theories of sentence processing� Gar�eld ��
��	�������

Gaifman� H� ������ Dependency systems and phrase�structure systems� Information and
Control
���������

	�

Gar�eld� J� L�� ed� ���
�� Modularity in knowledge representation and natural
 langauge
understanding� Cambridge� Massachusetts� MIT Press�

Gazdar� G�
 Klein� E�
 Pullum� G�
 and Sag� I� ���
�� Generalized phrase structure grammar�
Cambridge� Massachusetts� Harvard University Press�

Hale� K� ���
�� Warlpiri and the grammar of non�con�gurational languages� Natural Lan

guage and Linguistic Theory �������

Hays� D� G� ������ Dependency theory� a formalism and some observations� Language
��������	��

� ������ Parsing� Readings in automatic language processing� ed� D� G� Hays� ���
	� New
York� American Elsevier�

Hays� D� G�� and Ziehe� T� W� ������ Studies in machine translation � ��� Russian sentence

structure determination� Project RAND Research Memorandum RM�	��
� Santa
Monica� RAND Corporation�

Hellwig� P� ���
�� Dependency uni�cation grammar� Proceedings� COLING ��� ������
�

Huck� G� J�� and Ojeda� A� E�� eds� ���
�� Syntax and semantics� vol� 	�� Discontinuous
constituency� Orlando� Academic Press�

Hudson� R� A� ���
�� Constituency and dependency� Linguistics �
 �n�s�� ������
�

� ���
�� Word grammar� Oxford� Blackwell�

� ���

� Coordination and grammatical relations� Journal of Linguistics 	��������	�

� ���
�� Towards a computer�testable Word Grammar of English� UCL Working Papers
in Linguistics� vol� �� �	������ University College London�

IBM ���
�� VM�Programming in Logic program description�operations manual� IBM pub�
lication SH	���������

Jackendo�� R� ������ X� syntax� a study of phrase structure� Cambridge� Massachusetts�
MIT Press�

J!appinen� H�
 Lehtola� A�
 and Valkonen� K� ���
�� Functional structures for parsing depen�
dency constraints� Proceedings� COLING ��� ��������

Kaplan� R� M�� and Bresnan� J� ���
	� Lexical�functional grammar� a formal system for
grammatical representation� Bresnan ��
	b�����	
��

Karttunen� L�� and Kay� M� ���
�� Parsing in a free word order language� Dowty� D� R�� et
al�� eds�� Natural language parsing� 	������� Cambridge University Press�

Kashket� M� B� ���
�� Parsing a free�word�order language� Warlpiri� Proceedings�
�th
Annual Meeting of the Association for Computational Linguistics� ������

Kilbury� J� ���
�� Earley
basierte Algorithmen f�ur direktes Parsen mit ID�LP
Grammatiken�
KIT�Report ��� Technische Universit!at Berlin�

Kolb� H��P� ���
�� Diskursrepr!asentationstheorie und Deduktion� Linguistische Berichte
����	���	
	�

Kowalski� R� ������ Logic for problem solving� New York� North�Holland�

��

Matsumoto� Y�
 Tanaka� H�
 Hirakawa� H�
 Miyoshi� H�
 and Yasukawa� H� BUP� a bottom�up
parser embedded in Prolog� New Generation Computing ��������
�

Mel�cuk� I� A� ���

� Dependency syntax� theory and practice� Albany� State University
Press of New York�

Miller� J� ���
�� Semantics and syntax� Cambridge University Press�

Padegs� A� ���
�� System���� and beyond� IBM Journal of Research and Development
	����������

Radford� A� ���
�� Transformational grammar� Cambridge University Press�

Robinson� J� J� ������ Dependency structures and transformational rules� Language ���	���
	
��

Ross� J� R� ������ Constraints on variables in syntax� Dissertation� M�I�T� Published as
In�nite syntax� Norwood� N�J�� Ablex� ��
��

Sag� I� ���
�� Grammatical hierarchy and linear precedence� Huck and Ojeda ��
����������

Schubert� K� ���
�� Metataxis� contrastive dependency syntax for machine translation� Dor�
drecht� Foris�

Shaumyan� S� ���
�� A semiotic theory of language� Bloomington� Indiana University Press�

Shieber� S� M� ���
�� Direct parsing of ID�LP grammars� Linguistics and Philosophy ������
����

� ���
�� An introduction to uni�cation
based approaches to grammar� �CSLI Lecture Notes�
��� Stanford� CSLI�

Siewierska� A� ���

� Word order rules� London� Croom Helm�

Starosta� S� ���

� The case for lexicase� London� Pinter�

Starosta� S�� and Nomura� H� ���
�� Lexicase parsing� a lexicon�driven approach to syntactic
analysis� Proceedings� COLING ��� �	����	�

Stearns� R� E�� and Covington� M� ���
�� Prolog on the CYBERPLUS� a feasibility study�
Research report �������� Advanced Computational Methods Center� University of
Georgia�

Steedman� M� ���
�� Combinatory grammar and human language processing� Gar�eld
��
���
��	���

Tarvainen� K� ���
	� Einf�uhrung in die Dependenzgrammatik� T!ubingen� Niemeyer�

Tesni�ere� L� ������ Esquisse d�une syntaxe structurale� Paris� Klincksieck� Cited by Robin�
son �������

� ������ �El�ements de la syntaxe structurale� Paris� Klincksieck�

Tomita� M� ���
�� E�cient parsing for natural language� Boston� Kluwer�

Tucker� S� G� ���
�� The IBM ���� system� an overview� IBM Systems Journal 	���������

Ueda� M� ���
�� Notes on parsing in Japanese� Unpublished� Department of Linguistics�
University of Massachusetts� Amherst�

��

Uszkoreit� H� ���
�a� Word order and constituent structure in German� �CSLI Lecture
Notes�
�� Stanford� CSLI�

� ���
�b� Constraints on order� Report No� CSLI�
����� Stanford University�

� ���
�c� Categorial uni�cation grammars� Report No� CSLI�
����� Stanford University�

� ���
�� Linear precedence in discontinuous constituents� complex fronting in German�
Huck and Ojeda ��
�������	��

Walker� A�� ed� ���
�� Knowledge systems and Prolog� Reading� Massachusetts� Addison�
Wesley�

Wood� R� C� ���
�� The language advantage� Japan�s machine translators rule the market�
High Technology Business ���� �November�� p� ���

Woods� W� A� ���
�� Grammar� augmented transition network� Shapiro� S� C�� ed� Ency

clopedia of arti�cial intelligence ���	������ New York� Wiley�

�	

Listing �� Part of the lexicon� which ignores morphology and simply lists every form of
every word� This is a stand�in for the morphological component that would be needed in a
practical system�

word�phon�koshka �� cat�noun �� gloss���cat�� �� case�nom �� num�sg �� gen�fem��

word�phon�koshku �� cat�noun �� gloss���cat�� �� case�acc �� num�sg �� gen�fem��

word�phon�koshki �� cat�noun �� gloss���cats�� �� case�nom �� num�pl �� gen�fem��

word�phon�koshki �� cat�noun �� gloss���cats�� �� case�acc �� num�pl �� gen�fem��

word�phon�sobaka �� cat�noun �� gloss���dog�� �� case�nom �� num�sg �� gen�fem��

word�phon�sobaku �� cat�noun �� gloss���dog�� �� case�acc �� num�sg �� gen�fem��

word�phon�sobaki �� cat�noun �� gloss���dogs�� �� case�nom �� num�pl �� gen�fem��

word�phon�sobaki �� cat�noun �� gloss���dogs�� �� case�acc �� num�pl �� gen�fem��

word�phon�vidit �� cat�verb �� gloss���sees�� �� num�sg �� pers����

word�phon�vidut �� cat�verb �� gloss���see�� �� num�pl �� pers����

word�phon�presleduet �� cat�verb �� gloss���pursues�� �� num�sg �� pers����

word�phon�presleduyut �� cat�verb �� gloss���pursue�� �� num�pl �� pers����

word�phon�cherez �� cat�prep �� gloss���through�� �� case�acc��

��

Listing �� D�rules used by the prototype Russian parser�

cat�verb �� pers�P �� num�N �� subj�S

�� cat�noun �� case�nom �� pers�P �� num�N �� gr�subject �� id�S�

cat�verb �� obj�Ob

�� cat�noun �� case�acc �� gr�direct�object �� id�Ob�

cat�verb

�� cat�prep �� gr�modifier�

cat�noun �� case�C �� num�N �� gen�G

�� cat�adj �� case�C �� num�N �� gen�G �� gr�modifier�

cat�prep �� case�C �� obj�Ob �� posn�	

�� cat�noun �� case�C �� gr�object�of�preposition �� id�Ob�

��

Listing �� Output of a typical parsing run� The sentence is ambiguous as to whether belye modi�es
sobaki or koshki � both parses are found�

vidut�sobaki�belye�koshki�v�chornom�lesu�

Parsed structure

vidut �see�

sobaki �dogs� subject

belye �white� modifier

koshki �cats� direct�object

v �in� modifier

lesu �forest� object�of�preposition

chornom �black� modifier

Parsed structure

vidut �see�

sobaki �dogs� subject

koshki �cats� direct�object

belye �white� modifier

v �in� modifier

lesu �forest� object�of�preposition

chornom �black� modifier

��

Table �� Comparative speed of several Prolog implementations�

Search�and ����element

backtrack list reversal

IBM PS�����

Arity Prolog ��	 �	�� sec ���	 sec

�interpreted� 	�� kLIPS ��� kLIPS

IBM PS�����

ALS Prolog 	�� 	�� sec ��� sec

�compiled� ���� kLIPS 	��� kLIPS

Sun Sparcstation

Quintus Prolog ��	�� sec ��	�� sec

�compiled� 	�� kLIPS 	�� kLIPS

IBM ��������

VM�Prolog ����� sec ����� sec

�interpreted� ��� kLIPS 		� kLIPS

Benchmark programs are from Covington and Vellino ���	
��
kLIPS � thousand logical inferences per second�

��

