
Research Report AI–1990–02

Handling Constrained Clauses in
Discourse Representation Theory

Artificial Intelligence Programs
The University of Georgia

Athens, Georgia 30602

Handling Constrained Clauses in
Discourse Representation Theory

William H. Smith

Piedmont College
Demorest, GA 30535

Artificial Intelligence Research Group
The University of Georgia

Athens, GA 30602

August 8, 1990

Introduction

This report describes a Prolog program that transforms a natural language input into a
knowledge base of Prolog clauses. The key element of the program is its ability to handle
constrained clauses—embedded clauses whose truth evaluation is different from that of in-
dependent clauses. Consider sentence (0.1.a):

(0.1.a) Bob, who is a farmer, believes that Carol regrets that she kissed Ted.
(b) Bob is a farmer.
(c) Carol regrets that she kissed Ted.
(d) Carol kissed Ted.

Clauses (0.1.b,c,d) are embedded in (0.1.a). (0.1.b) is not constrained; it is subject to the
same truth evaluation that (0.1.a) is. (0.1.c) and (0.1.d) are constrained. (0.1.a) reports
what Bob believes, but Bob may be wrong, so the truth of (0.1.a) should not depend on the
truth value of (0.1.c). As we shall see in Section 3 of this report, (0.1.d) should be subjected
to truth evaluation; the difference between (0.1.c) and (0.1.d) is determined by the difference
between the constrainers believe and regret.

The theoretical basis of this program is an extension of Discourse Representation Theory
(Kamp 1981). Kamp proposed Discourse Representation Theory (DRT) as a bridge between
the output of a syntactic parse and model theoretic semantics, a bridge that would combine
“a definition of truth with a systematic account of semantic representations.” (277) The
DRT algorithm produces a representation that can be used to determine the truth conditions
of a discourse. Subsequent research has extended the original theory and has implemented
it in computer programs.

Section 1 of this report presents a description of the theoretical framework of DRT, a descrip-
tion that will further clarify what is meant by ‘constrained clause’ and ‘truth contribution.’

1

Section 2 examines suggested extensions to DRT that enable it to handle a wider range of
sentences. Section 3 presents the linguistic theory underlying the difference between (0.1.c)
and (0.1.d).

In the remaining sections the report shifts its focus from theory to implementation. Section
4 describes the Prolog program of which this is an extension, and Section 5 describes the
extensions to that program. Section 6 evaluates the success of the program and suggests
other extensions that are needed.

1 DISCOURSE REPRESENTATION THEORY

A model consists of two sets: a set of entities (the universe) and a set of properties of those
entities and relations that hold among them. DRT seeks to provide a representation for
discourse that will be suitable for truth evaluation in a model. DRT takes as input the
output of a syntactic parse (e.g. the Logical Form of Government and Binding Theory) and
produces a representation whose structure parallels that of the model.

The central notion of DRT is the Discourse Representation Structure (DRS). A DRS K is a
pair <U,C>, where U is a set of reference markers (the universe) and C is a set of conditions
(properties, relations, or complex conditions—negation, disjunction, or implication). The
initial DRS, K0, contains none of the information in the discourse. As the discourse is
processed, the DRS construction algorithm, taking the output of a syntactic parse as its
input, produces a sequence of K’ as it incorporates new material from the discourse into K.
For example:

(1.1) Bob saw a woman.

K:<U:{R1, R2},

C:{Bob(R1),

woman(R2)

saw(R1, R2) }>}

At any point in the construction, the current DRS may be evaluated for truth in the model.
Discourse truth in model theoretic semantics is determined by a mapping from a representa-
tion of the discourse (in DRT, a DRS) to the model, a mapping that preserves the properties
and relationships expressed in the discourse. A discourse is held to be true in a model if
there is a mapping such that the set of referenced items (the discourse referents in DRT)
maps to a subset of the universe of the model and each property or relation expressed by the
discourse (the set of conditions in DRT) is true of the corresponding entities in the model.
(For ease of exposition, I refer to the truth evaluation of a clause or discourse; it is in fact
the DRS that is evaluated.)

2

In DRT, each proper noun and each indefinite noun phrase (NP) in the input is taken to
have existential quantification. (In a DRS, quantifiers are implicit; with exceptions to be
noted shortly, all discourse referents are understood as being existentially quantified.) Thus,
when the construction algorithm encounters a proper noun or indefinite NP, a new discourse
referent is added to U (R1 and R2 in (1.1)). Each definite NP (including each pronoun)
in the discourse must be coreferential with a discourse referent. Antecedent assignment is
accomplished by finding an item in U that agrees with the anaphoric expression (for pronouns,
an entity that agrees in gender and number). (It should be noted that the fragment of natural
language that can be handled by current versions of DRT is quite limited, excluding plural
and generic NPs.) Thus, (1.2) shows an extension of (1.1).

(1.2) He kissed her.

K:<U,

C := C + {kissed(R1, R2) }>

As in Pascal, := is an assignment operator and + indicates union of sets. Thus, the third
line of (1.2) means that the new C is the union of the old C and the set {kissed(R1, R2)}.

The basic theory would add R3, R4 to U, and then set them equal to R1, R2, respectively. A
later “clean-up” operation would eliminate these redundant discourse referents by equating
coreferential discourse referents. In the implementation to be described here, resolution of
anaphoric relations is accomplished during the syntactic parse, so the redundancy does not
occur.

If U contains two or more possible antecedents, the conflict is resolved by selecting the most
recent one. Consequently, U must be ordered, contrary to Kamp (1981) in which U is a set,
and must be re-ordered each time an entity is referenced (see, for example, Goodman 1988).

Kamp (1985) describes the DRS construction algorithm as “a set of rules that operate, in
a roughly top-down manner, on the nodes of the parse tree,” (2) converting those nodes
into the conditions of C and, when appropriate, introducing new discourse referents into U.
The basic version of DRT is directed toward the role of NP nodes in the discourse—their
relationship to U.

The special value of DRT is its ability to handle indefinite NPs that should not introduce
new discourse referents. Consider the following extension of (1.2):

(1.3.a) She did not wear a ring.

We must extend the algorithm, because as described so far it would produce something like
(1.3.b):

3

(1.3.b) K:< U := U + {R3},

C := C + {ring(R3),

not wear(R2, R3) }>

The truth contribution of (1.3.a) to the truth of the discourse will depend on the existence
in the model of a ring that she did not wear. But that is not what (1.3.a) means; (1.3.a) is
true in the model only if there is no ring in the model such that she wore it. That is, (1.3.c)
must be false:

(1.3.c) She wore a ring.

Thus, the truth evaluation of a negative clause demands a special representation.

Kamp’s solution is to add to C a sub-DRS for (1.3.a):

(1.3.d) K:<U, C := C + {not(K1,

K1:<U1: {R3},

C1: {ring(R3),

wear(R2, R3) }>) }>

Discourse referents in U are visible to conditions in C1, but those in U1 are not visible to
C. Since the sub-DRS is controlled by negation, its truth contribution is the opposite of the
truth value of K1; that is, if K1 can be satisfactorily mapped to the model, the discourse is
false.

I shall speak of clauses such as (1.3.c) in (1.3.a) as ‘constrained clauses’ because their truth
contributions to the DRS in which they are embedded are constrained, in this case by nega-
tion. (This definition of ‘constrained clause’ may seem to be at odds with that offered in
the introduction, since (1.3.c) is not, in traditional terms, an embedded clause. Some syn-
tacticians, however, treat negation as a ‘higher predicate’ whose argument is the embedded
clause to be negated. (e.g. McCawley 1988)).

Other constrained clauses handled by Kamp’s original theory are those in disjunctions, impli-
cations, and universally quantified NPs. In each case, the constrained clauses are represented
by sub-DRSs. The truth contribution of a disjunction is ‘true’ if one of the disjuncts eval-
uates to true; that of an implication is ‘true’ provided that in any mapping in which the
antecedent is true the consequent is true also.

An important feature of DRT is that it treats sentences containing universally quantified
NPs as implications. The information within the universally quantified NP restricts the set
of entities in the universe to which the NP can refer, and the remainder of the sentence is the
scope of the quantifier. For example, the scope of the subject NP is the VP, and the scope

4

of the direct object is the verb. Kamp treats the information in the universally quantified
NP as the antecedent of an implication whose consequent is the information in the scope of
that NP. Thus, (1.4.a) is represented as (1.4.b).

(1.4.a) Every sad man loves a pretty woman.

(b) K:<U:{},

C:{K1 ==> K2,

K1: <U1:{R1},

C1:{man(R1),

sad(R1) }>

K2: <U2:{R2},

C2:{woman(R2),

pretty(R2),

loves(R1, R2) }> }>

The effects of sentence connectives as constrainers is uncomplicated, as they are taken di-
rectly from formal logic. The treatment of other constrainers is more complex, as will be
seen when extensions to the basic theory are considered.

2 EXTENSIONS TO THE BASIC THEORY

Events and Propositions

The basic theory is confined to a very limited subset of natural language. In particular, it is
limited to singular, non- generic NPs, to anaphoric reference (i.e. the referent is present in
the discourse), and to sentences whose main verbs do not take propositions (i.e. DRSs) as
arguments. Reducing the first two limitations requires a full theory of reference that must
take into account grammar, pragmatics, and knowledge of the real world, and is beyond the
scope of this study. Here we are concerned with reducing the third limitation.

Guenthner et al. (1986) extend the basic theory by adding two new types of discourse referent:
event markers and time markers. These researchers also include meaning rules in the DRS
construction algorithm that assign an event marker to each verb and to each noun that refers
to an action (e.g. accident). Each time reference (i.e. time of day or extent of duration) is
assigned to a time marker. Events are temporally ordered with respect to each other and
to time references: an event may precede or overlap another event or time, it may be given
an argument expressing its duration, or it may be a subset of another event. The addition
of event markers makes it possible for predicates to take DRSs as arguments. Guenthner
et al. (1986) do not include any examples of such a use of event markers, but Guenthner

5

(1987) does. In that article he also makes a notational distinction between events, which
advance the time of discourse, and situations, which do not. Spencer-Smith (1987) does not
use event markers, but adds a different type of discourse referent, a proposition marker. This
extension makes it possible to include embedded predicates, such as infinitival complements
and beliefs, in the DRS:

(2.1) Carol wants to kiss a rich man.

K:<U: {R1, P1

C: {Carol(R1), want(R1, P1),

P1: <U: {R2},

C: {rich(R2),

man(R2),

kiss(R1, R2) }> }>

The embedded DRS of (2.1) is an example of a constrained clause, in this case constrained
by want . (2.1) may evaluate to true even if no such R2 exists in the model. (Note that this
reading gives narrow scope to rich man; Carol does not know which rich man she wants to
kiss.)

Beliefs

Kamp (1985) also explored the representation of beliefs. His treatment requires two further
additions to DRT: internal and external anchors. Anchors are used to connect discourse
referents to entities in the world. External anchors are ordered pairs, <Entity, Marker>,
that associate the two as they actually are, while internal anchors are DRS-like structures
that associate items as a subject believes they are. The use of anchors makes it possible to
represent propositions that are in fact contradictory but are not so in the subject’s belief
system because his internal anchors differ from the external anchors:

(2.2) Bob believes that Hesperus is pretty and Phosphorus is not pretty.

6

External Anchors: <R1,Bob>,

<R2, Venus>,

<R3, Venus>

Internal Anchors:

L: <U: {R2, R3},

C: {evening_star(R2),

morning_star(R3)}>

K: <U: {R1, P1},

C: {Bob(R1),

believes(R1, P1),

P1: <U: {R2, R3},

C: {pretty(R2),

~K1,

K1: <C1: {pretty(R3)}> }> }>

The extension of DRT with internal and external anchors give the theory considerable power,
but is far from giving it the power necessary to represent adequately the full range of mean-
ings of natural language. It does not, for example, specify whose internal anchor is to be
invoked. Asher (1986) combined the concepts of proposition markers and of anchors in
order to handle the problem, again with considerable modification to DRT and the DRS
construction algorithm.

Asher dealt with the problem of Pierre, who, as a child in Paris, saw Londres—London—in
a picture book, and who, as an adult, lives in a London slum. It is now reported that

(2.3) Pierre believes that Londres is pretty and London is not pretty.

Sentences like (2.2) and (2.3) have been a serious problem for traditional logic, which holds
that the set of true sentences is closed under substitution of coreferential terms (SC), such
as Londres and London. The belief cannot be added to the toplevel DRS because under SC
it is contradictory in the model and its truth value is false, although it is actually a true
report of Pierre’s belief. The belief must somehow be constrained in a sub-DRS whose truth
is evaluated according to Pierre’s cognitive state. But the belief remains contradictory in a
simple sub-DRS such as that used for (2.2).

Asher made use of a proposition marker that refers to a sub-DRS rather than an entity, one
that represents the content of the complement of believes. This sub-DRS, a ‘delineated DRS’,
is more complex than those of the basic theory. It is augmented with DRS-like structure
representing the cognitive state of the believer—entities and properties that are not explicit
in the discourse but must be true in the possible world in which the belief is true. This
internal anchor may contain a condition that distinguishes between two referents that are
coreferential in the model, as in Pierre’s case, or vice versa. In addition, Asher argues that
SC does not hold in natural language; two NPs that are coreferential but different in form
convey different information and are not substitutable.

7

In Smith (1989), I applied DRT, the basic theory augmented by the extensions suggested
above, to a narrative that had been normed at sixth-grade comprehensibility in order to
detect further extensions to DRT that would be necessary in order to represent adequately
a natural language discourse. That study suggested the need for additional mechanisms for
handling the truth contributions of constrained clauses; mechanisms that deal with the influ-
ence of the constrainer on the constrained clause and mechanisms that determine whether, on
the basis of subsequent information, a constrained clause should be elevated to the toplevel.
These topics are the focus of this study, and will be considered in the next section.

3 THE TRUTH-CONTRIBUTIONS OF CONSTRAIN-
ED CLAUSES

Clearly, beliefs are constrained clauses; their truth evaluation is constrained by believe to
a method such as that described by Asher. However, while Asher’s procedure answers a
number of problems when truth is considered from the standpoint of philosophical logic, it
is rather awkward when truth is considered from the point of view of information retrieval.
For an information retrieval system, truth may simply be the ability, given (2.3), to answer
such questions as (3):

(3.1.a) What does Pierre believe?
(b) Does Pierre believe that London is pretty?

Although Pierre’s belief is contradictory, the report of that belief is not. Perhaps the user
does not care that the answer to (3.1.a) is contradictory (the user may even want to know if it
is contradictory); or that the answer to (3.1.b) is one of two possible answers. Furthermore,
the software necessary to construct a possible world in which Pierre’s belief is true (if such a
program can be constructed at all) comes at a considerable cost in production time, program
size, and run time, and the world it describes might be even less acceptable than Pierre’s
contradictory belief system. We turn now to a method by which constrained clauses can be
handled, from an information retrieval point of view, by a much less elaborate method.

Truth Evaluation in an Information Retrieval System

From the information retrieval point of view, truth is what the user claims to be true; input
is taken to be true unless it is constrained, as in (2.3) (unless, perhaps, it is inconsistent with
the knowledge base). However, constrained clauses are not always blocked from toplevel
truth evaluation. I turn now to an examination of various constraining terms and their
effects on truth evaluation. This examination is limited to constrained clauses whose truth
value is available; that is, the event or state reported has already occurred or failed to occur.
Consider the ‘neutral’ constrainer in (3.2):

8

(3.2.a) Ted said that Bob kissed Alice.
(b) Ted said, “Yecch!”
(c) She does not kiss yuppies.
(d) Ted was right.

(3.2.a) is true if Ted uttered the constrained clause (or words to that effect), even if the user
knows Ted to be a pathological liar. Thus, the constrained clause should not be evaluated
for truth at all. The simplest representation of (3.2.a) would assign a discourse referent to
the constrained clause in its surface form, without analysis, as is necessarily the case for
(3.2.b). However, there are at least four reasons for representing the constrained clause as a
sub-DRS, albeit a DRS that is shielded from truth evaluation:

(3.3.a) The user might have applied SC to Ted’s actual utterance. If the system
includes a facility for calculating a confidence factor (i.e. How reliable is Ted?),
it will be necessary to analyze the constrained clause in order to allow for SC
in checking for corroboration.

(b) (3.2.a) might be followed by (3.2.c). If the constrained clause has not been
analyzed, the discourse referent for Alice will not be available as an antecedent
for she.

(c) If (3.2.a) is the first occurrence of either proper NP, a discourse referent for that
entity should be added to the toplevel universe; that entity is ‘pragmatically
presupposed’ by the proper NP (McCawley 1981). This addition can only be
made if the constrained clause is first analyzed.

(d) If (3.2.a) is sometime later followed by (3.2.d), provided by the user, the dis-
course referents and conditions for the constrained clause should be added to
the toplevel DRS, and that addition should be based on the context available
at the time of (3.2.a), excluding anything that might have been added by in-
tervening sentences. While the necessary analysis could be carried out at the
time of (3.2.d), it would be much simpler if it were done at the time of (3.2.a).

Types of Constrainers

The procedure described above, which blocks the truth evaluation of the constrained clause,
may, depending on the requirements of the information retrieval system, be satisfactory for
a number of constrainers that report utterances or cognitive states, including the following:

(3.4) SAY CLASS (OBJECT)
say suppose allege believe deem
assert assume charge fancy conclude
maintain intimate deny conjecture

9

(The list of constrainers in (3.4), as well as those lists that follow, is taken largely from
Kiparsky and Kiparsky (1970), as is the analysis on which what follows is based.)

Note that if a sentence whose main verb is deny is later confirmed, it is the negation of the
constrained clause that must be added to the toplevel DRS. The same would be true of (3.2.a)
followed by (3.2.d) with right replaced by wrong . Assuming this fact to be self-evident, I
shall not make special note of other constrainers of this type.

The representation described above will allow an infor- mation retrieval system to answer
questions such as those in (3.1). However, there remains an implementation problem to be
resolved. Should the system respond only when the constrainer in the inquiry is identical
to that in the original input, or should it respond when one constrainer in (3.4) is replaced
by another? If the answer is the latter, which constrainers are substitutable? The answer
depends on the needs of the particular system, and will not be examined further here.

A group of constrainers whose truth evaluation should be treated in the same fashion is
illustrated in (3.5):

(3.5) It seems that Bob kissed Alice.

Constrainers such as seem question or hedge on the truth of their subjects, which are often
extraposed, as in (3.5). Similar constrainers are shown in (3.6):

(3.6) SAY CLASS (SUBJECT)
seems is likely is possible
appears is probable

Kiparsky and Kiparsky point out the fact that some of these constrainers allow non-finite
for-to clauses (e.g. ‘for Bob to kiss Carol’) as their subjects, but do not allow poss-ing (e.g.
‘Bob’s kissing Carol’) subjects. I shall return to this fact shortly.

Many of the Say Class of constrainers have adverbial forms:

(3.6.a) It is probable that Ted kissed Carol.

(b) Ted probably kissed Carol.

Although the two sentences in (3.6) are synonymous, the constrained clause in (3.6.a) is
dependent while the same clause in (3.6.b) is independent. Nevertheless, synonymous clauses
should be treated in the same manner; that is, the constrained clause should not be evaluated
for truth in the toplevel DRS.

The group of constrainers shown in (3.7) is syntactically identical to those in (3.6), but the
truth contribution is quite different.

10

(3.7) TRUE CLASS (SUBJECT)
true happens certain

chances sure
false turns out

These constrainers assert the truth (or falsity) of the constrained clause. Thus, the con-
strained clause should not be shielded from the truth evaluation of the toplevel DRS. The
simplest representation of a sentence containing one of these constrainers would ignore the
constrainer and add the representation of the constrained clause to the toplevel DRS. Such
a representation would make it impossible to refer to the constrained clause (cf. 3.2.d), but
such reference seems unlikely. If such references must be allowed, sentences containing those
constrainers can be handled in the manner of (3.2.a) followed by (3.2.d).

Note that if one of the True Class of constrainers appears in negated form, it is the negation
of the constrained clause that is added to the DRS. (However, the negation of certain is a
Say Class constrainer. The converse is true of possible.)

A fourth group of constrainers, although syntactically identical to the Say and True Classes,
makes a truth contribution that is different from either.

(3.8) REGRET CLASS (SUBJECT)
surprising exciting amuses matters
significant relevant counts suffices
tragic odd bothers makes sense

These constrainers (‘factives’ for Kiparsky and Kiparsky) semantically presuppose the truth
of their complement clauses. That is, the complement clause is held to be true, whether
the constrainer appears in positive or negative, declarative or interrogative form. Therefore,
the constrained clause should not be shielded from toplevel truth evaluation. In addition,
these constrainers have semantic content of their own, unlike those in the True Class. (e.g.
The user may want to know what the significance is.) It is thus necessary to assign a
discourse referent to the constrained clause so that it can appear as an argument to the
constrainer. These considerations suggest that a clause constrained by one of these terms
should be represented twice, once as an independent sentence and once in the manner of a
clause constrained by a Say Class constrainer.

The fifth group of constrainers functions syntactically like the Say Class (Object), but makes
a truth contribution like that of the Regret Class (Subject).

11

(3.9) REGRET CLASS (OBJECT)
regret forget (about) be aware (of)
resent make clear bear in mind
deplore ignore take into account/consideration
mind comprehend
care (about) grasp

These verbs also have semantic content, so discourse referents for the constrained clauses
must be added to the toplevel DRS. These verbs allow the fact that and poss-ing comple-
ments, but not for-to complements (at least, not with presuppositional value). Some (regret,
forget) have presuppositional value under equi-NP deletion, but others do not.

Kiparsky and Kiparsky note that the truth contribution of a clause depends only on the
immediate constrainer, no matter how deeply it is embedded:

(3.10.a) Carol appears to believe that Bob regrets that he kissed Alice.
(b) Bob kissed Alice.

Thus, (3.10.a) presupposes (3.10.b), because it is constrained by regret , in spite of the fact
that the intervening appear and believe are Say Class constrainers.

The next class of constrainers is labeled ‘indifferent’ by Kiparsky and Kiparsky because the
truth of the constrained clause may or may not be presupposed.

(3.11) SUSPECT CLASS (OBJECT)
suspect acknowledge announce emphasize
anticipate admit report remember
deduce

With poss-ing complements, these verbs are factives, Regret Class constrainers. With finite
and for-to complements, however, it is unclear whether they are Say Class or True Class
constrainers.

It may have been noted that there is no list of True Class (Object) constrainers. This gap
is particularly striking when one considers that two of the verbs in (3.7), certain and sure,
can constrain object clauses.

(3.12.a) It was certain that Bob kissed Alice.
b) Ted was certain that Bob kissed Alice.
c) Ted was certain of Bob’s kissing Alice.
d) Bob kissed Alice.
e) I am certain that Bob kissed Alice.

12

Sentence (3.12.a) asserts the user’s belief that (3.12.d) is true, but (3.12.b) only asserts Ted’s
belief; the user may know Ted to be wrong. Sentence (3.12.c) is even worse; Ted may have
believed that (3.12.d) had already occurred, or that it was potential. Thus, while these verbs
are True Class (Subject) constrainers, they are Say Class (Object) constrainers.

Almost paradoxically, this class shift holds even with a first-person subject. Sentence (3.12.e)
seems to assert what (3.12.a) asserts, the user’s belief that (3.12.d) is true in the model.
However, the user’s choice of (3.12.e) rather than (3.12.a) is a hedge on that assertion.

Another complex group of constrainers is that shown in (3.13):

(3.13) KNOW CLASS (OBJECT)
know comprehend learn
see understand realize

When one of these verbs is used in a past tense, it is factive; the truth of its constrained
clause is presupposed, regardless of the subject or the polarity (affirmative or negative).
With a third-person subject, the constrained clause is presupposed in the present tense. (It
is assumed here that the constrainer is provided by the user and is not his ironic quotation
of the subject.)

It is when the verb has a first-person subject in a present tense that the complexity arrives.
In this case, the verbs in (3.13) must be treated on an individual basis. To do so, it will
help to use the template in (3.14), where the blank is to be filled in by a (possibly negated)
constrainer.

(3.14) I a. (that) Bob kissed Alice.
b. (of/about) Bob’s kissing Alice.
c. (for) Bob (to) kiss Alice.

The constrainer know allows (3.14.a,b). In either case, it is like certain: in the affirmative
it is a True Class constrainer, but in the negative it shifts to the Say Class. As in the case
ofcertain, the poss-ing complement is not presupposed.

In (3.14.b), comprehend and understand presuppose their complement clauses. The verb
understand allows (3.14.a), but only in the affirmative, in which case it is a Say Class
constrainer, with a meaning something like “Someone said that Bob kissed Alice.” The
constrainer realize is acceptable only in (3.14.a) and presupposes its complement clause;
thus, if it is negated, it denies its own presupposition and the sentence makes no sense.

The simple present tense of learn does not work in (3.14) except in special contexts (e.g. an
actor referring to his role as himself), and the present progressive requires that the learning
process be extended, so that what is learned is (usually) not a simple fact. While in some
special contexts the constrained clause is presupposed, it is more practical to treat first-

13

person present tense learn as a Say Class constrainer. The verb see is ambiguous between
an act of perception and a state of cognition. In the former case it allows (3.14.c) (without
prepositions) and is a True Class constrainer. In (3.14.a), see reports a cognitive state; in
the affirmative it acts as does understand , but in the negative it is a Say Class constrainer.

This section has examined clauses whose truth contribu- tions to a DRS are constrained by
a certain group of predicates (verbs and adjectives). It has found five classes of constrainer,
some with subclasses according to whether the constrained clause is the subject (perhaps
extraposed) or the object of the predicate:

(3.15.a) SAY CLASS: The constrainer makes no claim about the truth contribution of
the constrained clause, so that clause should be shielded from toplevel truth
evaluation. However, the clause should be identified by a discourse referent
because it may later be confirmed or contradicted.

(b) TRUE CLASS: The constrained clause is added to the toplevel DRS because
the constrainer asserts the truth of its complement. (If the constrainer is
negated, it is the negation of the constrained clause that is added.) Such
clauses might not require discourse referents, although no harm is done if
referents are assigned.

(c) REGRET CLASS: The constrainer presupposes the truth of the complement
clause, so that clause is added to the toplevel DRS. This addition is indepen-
dent of the form of the matrix clause (i.e. affirmative-negative, declarative-
interrogative).

(d) SUSPECT CLASS: Presupposition depends on the syntactic form of the con-
strained clause. poss-ing complements are presupposed, but other comple-
ments are unclear about presupposition and are to be treated as those under
Say Class constrainers.

(e) KNOW CLASS: The constrained clause is presupposed unless the constrainer
is first-person, present tense. In the latter case, each verb requires its own
treatment.

It was noted that some True Class constrainers have corresponding adverbs. Other adverbs
can act as constrainers, and their truth contributions must be examined. Modal auxiliaries
and verbs with similar semantic value (e.g. ought to, want to) also require such analysis.
Associated with the modal class is the case of constrained clauses whose truth is not yet
known; should they be left unevaluated, or should they become ’demons’ whose truth must
eventually be evaluated? These questions remain to be answered.

In the next section we examine a computer implementation of DRT that is able to handle
certain of the constrained clauses described here.

14

4 AN IMPLEMENTATION OF DRT

In this section and the next we describe a computer implementation of DRT. It takes as
input a ‘discourse’ of one or more English sentences, parses the input and constructs a DRS
for it, and then asserts the set of conditions in that DRS to a Prolog knowledge base. The
language it accepts includes both the types of sentence described in Section 2 and a subset of
those described in Section 3. Specifically, it handles noun clause complements of a selected
group of Say, True, and Regret Class Constrainers.

This implementation is an extension of From English to Prolog via Discourse Representation
Theory (Covington, Nute, Schmitz, & Goodman, 1988; henceforth CNS&G). That program
is “a set of techniques for translating the discourse representation structures of Kamp (1981)
into semantically equivalent clauses in a slightly extended form of Prolog. (1)” That
program is in turn an extension of An Implementation of Discourse Representation Theory
(Covington & Schmitz, 1988; henceforth C&S), “a program that constructs discourse repre-
sentation structures from ordinary English input. (1)” It, in turn, is an extended version of
the program described in Johnson & Klein (1986). (The extension to be described in Section
5 of this report is designated CONSTRAIN. Note that the abbreviations C&S and CNS&G
will be used to refer both to the programs and to the documents describing them.)

Phrase Structure Rules

C&S is a top-down parser, written in definite clause grammar (DCG) notation, for a phrase
structure (PS) grammar. The PS rules are augmented with a hold mechanism that allows
the parsing of certain empty categories, and with a feature structure that allows syntactic
and semantic information to be passed from one node of the parse tree to another. Although
Kamp employs a top-down procedural algorithm, CNS&G view the PS-to-DRT mapping as
a static relation defined in terms of unification of feature structures. (The CNS&G view
follows that of Johnson & Klein (1986) and is in the spirit of Zeevat (1989)).

The addition of a hold mechanism and a feature structure, although necessary to give the
program its power, can make the description of the parser complicated; the reader who is
only concerned with the syntactic rules is likely to be confused by the presence of the feature
unification rules. To avoid that confusion, this description will be presented in three passes.
The first pass will treat the parser as if it consisted of DCG rules only, the second will add
the hold mechanism to that description, and the final pass will treat the feature structure.
Because of the interaction between the three, this neat simplification is not entirely possible.
For the first two passes the reader must accept without explanation the fact that the semantic
features carry the DRS for the portion of the discourse already processed.

C&S accepts discourses that conform to the PS rules shown below. (Parentheses indicate
optional elements; the parser actually has separate rules for these possibilities. Words in
brackets are terminal symbols.)

15

(4.1) discourse → statement, (discourse).
discourse → question, (discourse).
statement → sentence.
question → [does], np, vp.
question → [is], np, adj.
question → [is], np, np.
sentence → np, vp.
sentence → np, [does, not], vp.
sentence → np, [is], adj.
sentence → np, [is, not], adj.
sentence → np, [is], np.
sentence → np, [is, not], np.
sentence → [if], sentence, [then], sentence.

The PS rules for VP and Adj are straightforward, as is shown in (4.2). (Form is a variable
representing a terminal symbol.)

(4.2.a) vp → v, np.
(b) vp → v.
(c) v → [Form].
(d) adj → [Form].

As we shall see below, syntactic features prevent (4.2.c) from selecting a transitive verb for
(4.2.b), or an intransitive for (4.2.a).

While the rules for VP are essentially those of Chomsky (1965), the NP rules make use of
X-bar theory. NP is bar-3, and numeric suffixes indicate the other bar levels. As is the case
for VP, syntactic features subcategorize Form for lexical insertion—proper or common noun.
(Pronoun is a notational device; each gender of pronoun requires a separate rule. C&S is
not sensitive to pronoun case.)

(4.3.a) np → n. (Proper noun)
(b) np → [Pronoun].
(c) np → []. (Empty category)
(d) np → det, n2.
(e) n2 → n1.
(f) n2 → n1, relcl. (NP with relative clause)
(g) n1 → n.
(h) n1 → adj, n1.
(i) n → [Form].

Rules (4.3.c) and (4.3.f) will be discussed with the hold mechanism. Rule (4.3.b) searches

16

the incoming DRS for the most recent discourse referent that matches Pronoun in gender.
(Remember that this version of DRT does not handle plural NPs.) Rule (4.3.h) is recursive,
so n1 may contain any number of adjectives.

In order to handle empty categories, C&S adds to each phrasal rule two arguments, an input
and an output hold list. When rule (4.3.f) is applied, the discourse referent of n1 is placed
at the head of the input list and that list is passed to relcl. When (4.3.c) is applied while
processing relcl, the first referent on the hold list is removed and assigned to the empty
category. This procedure insures that empty categories are instantiated on a last-in-first-out
basis. The rules for discourse, statement and question require that the hold lists be
empty, since empty categories cannot be bound across sentence boundaries.

Unification of Feature Structures

The C&S parser incorporates a unification based grammar (Schieber 1986) that passes feature
structures from one node of the parse tree to another. Since features are passed by means
of unification, it is possible to pass a feature from one node to another before it has been
instantiated. For example, rule (4.2.a) unifies the discourse referent of np with the second
argument of v before either (4.2.c) or (4.3) is applied.

The use of feature structures is facilitated by the use of the GULP extension to Prolog
(Covington 1987). GULP makes it possible for the programmer to refer to features by name,
rather than by position in the feature structure. In consequence, a parser written in GULP
is much easier to read than is one written in standard Prolog notation. The C&S parser uses
syntactic features that constrain the parse procedure and semantic features that construct
DRSs during the parse procedure.

The syntactic features employed by C&S are syn:index, syn:class, syn:arg1 and, syn:arg2.
syn:index is a unique integer that is generated for each noun in the discourse; its value is
the discourse referent that is used to bind pronouns and empty categories. syn:arg1 and
syn:arg2 are also integers; they are unified with the syn:index features of the nouns in
a sentence and become the arguments of its predicates. The syn:class feature of a noun
(proper or common) or verb (transitive or intransitive) is a subcategorization that serves to
constrain the parse procedure, as was noted above.

The semantic features are sem:in, sem:out, sem:res:in, sem:res:out, sem:scope:in,
sem:scope:out. GULP makes it possible to address an individual feature or a bundle of
features; for example, a variable may be bound to sem:res:in, to sem:res (both in and
out are bound), or to sem (all features are bound). Features may be cross-unified, so that
sem:res of one node may be bound to sem of another node.

The value of a semantic feature is a list of one or more structures of the form drs(U, Con),
where U is a list of discourse referents and Con is a list of conditions. The first drs/2 on the
list is the representation currently being processed. Not all of the features are instantiated

17

for every node; in fact, most nodes use only the sem:in/out features. Each parent node
instantiates the sem:in of its daughter(s) to the DRS for the portion of the discourse already
processed. The daughter then adds its own discourse referents to U and its conditions to
Con, and returns the expanded drs/2 as sem:out to its parent. (The initial sem:in for a
discourse is [drs([], [])].)

Consider, for example, (4.4), which gives the full form of (4.2.d) along with the rules that it
calls.

(4.4.a) adj(Adj) --> [Form],

{adjective_features(Form, Adj)}.

(b) adjective_features(Form,Adj):-

append(Semantics, Con, NewCon),

Adj = syn: (index:I) ::

sem: (in : [drs(U, Con)|Super] ::

out: [drs(U, NewCon)|Super]).

(c) adjective(big, lambda(I, [big(I)])).

The N1-rule that calls (4.4.a) unifies the syn features of Adj with those of the noun that the
adjective modifies. It also unifies the sem:in feature of Adj with the appropriate feature of
that noun (which feature it is unified with depends on the calling rule). The entire feature
structure of Adj is then passed to (4.4.b).

Rule (4.4.b) unifies I with the syn:index feature of the modified noun and passes it to
(4.4.c), which in turn unifies it with the argument of Form, the adjective being processed.
The resulting structure is appended to Con, the condition list on the input DRS, and the
result, NewCon, is passed in the output DRS.

The sem:res and sem:scope features are needed in order to handle universally quantified
NPs. DRT treats a sentence with a universally quantified NP as an implication. The
antecedent, the sem:res feature, consists of the information in the NP itself, information
that restricts the set to which the NP refers. The consequent, the sem:scope feature,
consists of the information in the remainder of the sentence, the scope of the NP. Scope is
determined by the left-to-right ordering of NPs; the verb falls within the scope of all NPs,
and the object NP is within the scope of the subject NP.

C&S follows Johnson & Klein (1986) in treating the determiner as the key element in deter-
mining quantification. Thus, the sem of a sentence is the sem of the subject NP, which in
turn is the sem of the determiner of that NP. Consider (4.5).

(4.5) det(Det) --> [every],

{ Det = sem:in:A,

Det = sem:res:in:[drs([],[])|A),

Det = sem:res:out:B,

18

Det = sem:scope:in:[drs([],[])|B],

Det = sem:scope:out:

[Scope,Res,drs(U,Con)|Super],

Det = sem:out:[drs(U,[ifthen(Res,Scope)|Con])|Super] }.

Let us assume that (4.5) is called by an NP-rule that is called directly by an S-rule (i.e.
the NP in question is the subject of the sentence), and let us trace the feature unifications
through the parse tree. At this point, the only feature that has been instantiated is sem:in
(A in rule (4.5)), which contains the DRS for the preceding portion of the discourse. The
NP-rule unifies its entire sem feature with that of Det, and the S-rule likewise unifies its sem
feature with that of NP. The S-rule also unifies the sem of VP with the sem:scope of NP, from
which it is passed to the sem:scope of Det. The NP-rule also unifies the sem of N2 with
sem:res of Det.

Rule (4.5) unifies A with sem:in, the incoming DRS list, and conses to A a DRS with empty
universe and condition lists. The resulting list becomes sem:res:in, and therefore sem:in

of N2. The N2-rule fills those empty lists and returns them as B, the sem:res:out of Det.
(4.5) then prefixes an empty DRS to B, producing the sem:scope:in of DET and NP, and the
sem:in of VP. The VP-rule fills the empty DRS and returns it as sem:scope:out of NP and
DET. (4.5) extracts from sem:scope:out the first three DRSs: Scope, the now filled DRS
from VP, Res, the now filled DRS from N2, and the first DRS in A (the input DRS list),
drs(U, Con). Finally, Res and Scope are made arguments to the functor ifthen, which is
prefixed to Con. The result is the sem:out of DET, NP, and S.

Rule (4.5) is more complicated than most of the C&S rules, but all phrasal rules work in
the same general fashion. The reader is referred to C&S for complete specification of the
grammar; here we are concerned with the extensions to that program necessary in order to
handle constrained clauses.

Prologization of a DRS

CNS&G adds to C&S procedures that translate the DRS in the sem:out feature of a discourse
into Prolog clauses (Prologization) and then assert/process those clauses. Again, we are
concerned primarily with those portions that must be modified or extended for the present
implementation. The reader is referred to CNS&G for a complete specification of that
program.

Before translating the set of conditions of the output DRS into Prolog, two “clean-up” steps
must be performed. The lexical insertion rules of the parser provide two conditions for each
noun in the discourse: the property denoted by the noun and the gender of the noun. The
latter is needed only for anaphora resolution and is discarded before that set is processed.

The second clean-up step involves unifying equated discourse referents. The original C&S

19

parser assigns to each noun a unique integer, even in sentences such as (4.6):

(4.6) Pedro is a farmer.

The parser would then add a condition that equates the discourse referent of Pedro with
that of farmer . The parser in CNS&G is modified to defer the assignment of integers to
discourse referents to the Prologization module. That delay makes it possible to unify the
discourse referents for (4.6) so that only one integer is assigned to them. With that unification
accomplished, the universe of the DRS is no longer needed, and Prologization converts the
list of properties/relations in the conditions into a list of Prolog clauses.

Prologization works its way through the list of conditions and produces a new list that is
suitable for asserting or querying. If a condition is a simple property or relation, the output
of a lexical rule, it is simply added to the new list. If the condition is query(DRS), DRS
itself has to be cleaned up, Prologized, and converted into a conjunction of clauses. If the
condition is ifthen(DRSA, DRSC), DRSA (the antecedent) and DRSC (the consequent) must
be cleaned up and Skolemized before they can be Prologized and converted into conjunctions
of goals. Skolemization involves binding each uninstantiated variable in DRSC that does not
appear in DRSA to a list whose head is a unique integer and whose tail is the universe of
DRSA. Skolemization insures that such variables have existential import and narrow scope.

Processing Prologized Clauses

The output of Prologization is a list of clauses, each in one of the following forms:

(4.7.a) Clause
(b) neg(Clause)
(c) (ClauseList1 ::- ClauseList2)
(d) query(Clause)

Processing (4.7.a) in the assert/query module is a simple matter of asserting Clause. CNS&G
does not support negation; (4.7.b) is processed simply by noting that negation is not sup-
ported. The symbol ::- in (4.7.c) is a functor corresponding roughly to :- in Prolog; processing
involves converting the list of clauses into a conjunction of Prolog terms and asserting them.
Similarly, Clause in (4.7.d) is converted to a conjunction of Prolog terms and called, and the
result is reported to the user.

Actually, CNS&G does not assert or query anything; it simply announces what it would do if
it did. One of the first extensions to that implementation made by CONSTRAIN is to make
the processing step work. In essence, this extension is a matter of making the program do
what the CNS&G program says it would do. In the case of (4.7.b), Clause is not converted
to a conjunction of terms; it remains a list, the single argument to neg.

20

This treatment of negation is rather cursory, but the treatment of negation is not the focus
of this study. CONSTRAIN extends the C&S grammar to include disjunction, to which
the processing step pays similar lip service. This limitation is due to the fact that a dis-
junction such as (4.8.a) is not a Horn clause and cannot be represented directly in Prolog
(although a disjunction may appear in the body of a rule). (4.8.a) could be represented as
(4.8.b) and (4.8.c), but it would be unwise to do so before the details of neg/1 are worked out.

(4.8.a) p OR q
(b) p ::- neg(q)
(c) q ::- neg(p)
(d) query(p)

Further extensions to the grammar require more significant refinement of the assert/query
module especially in the case of questions; we shall return to these after examining the
extensions to the parser.

5 EXTENDING THE IMPLEMENTATION OF DRT

CONSTRAIN is divided, for ease of development, into eleven modules:

(5.1) DRT LOAD.GLP
DRT UTIL.GLP
DRT PS1.GLP
DRT PS2.GLP
DRT PS3.GLP
DRT LEX.GLP
DRT RED GLP
DRT PRO1.GLP
DRT PRO2.GLP
DRT TRY.GLP
DRT.TEST.GLP

DRT LOAD loads the program. Files that include feature structures make use of the GULP
load/1 command, which converts GULP feature notation into Prolog form. Those that do
not use feature structures are consulted because that procedure is faster. DRT LOAD also
defines the goal loadred/0, which is used to load the lexical redundancy rules in DRT RED,
a process that must be repeated every time the knowledge base is cleared with newkb/0.
Placing all of the load commands in one file facilitates relocating the program. If, for
example, the program is to be run from the A: drive, only DRT LOAD need be edited.

DRT UTIL contains general utility routines, such as list manipulation procedures, and pro-

21

cedures for displaying a DRS in a readable form.

DRT PS1, DRT PS2, and DRT PS3 contain the phrase structure rules. DRT PS1 contains
lexical insertion rules: rules that make direct calls to the lexicon (DRT LEX). DRT PS3
contains rules that deal with whole clauses (discourse, question, statement). DRT PS2
contains rules that rewrite intermediate structures.

DRT LEX and DRT RED contain the lexicon. The former contains the lexicon proper, while
DRT RED contains lexical redundancy rules, such as the rule that allows the program to
infer that Bob is a man.

DRT PRO1 and DRT PRO2 contain the rules that apply the DRS output by the parser
to a Prolog knowledge base. DRT PRO1 contains the Prologization module that translates
the conditions of the DRS into Prolog clauses, and DRT PRO2 contains the assert/query
module that asserts these clauses to the knowledge base or calls them as queries to that
knowledge base.

DRT TRY and DRT TEST contain the user interface. DRT TRY contains the rules that
accept an input and send it to the program for processing, while DRT TEST contains a test
suite that calls DRT TRY for processing.

Knowledge Representation

Most of the changes to C&S involve the addition of PS rules to DRT PS2 or DRT PS3.
These additions, of course, entail concomitant modifications to the other modules. These
modifications, however, are based on a more fundamental modification, a change in the form
of knowledge representation in DRT LEX.

In Kamp’s version of DRT, conditions are represented as predicate-argument structures:
Pred(Arg) or Pred(Arg1, Arg2). Pred is the natural language word (noun, verb, or adjec-
tive), and Arg is a discourse referent. C&S follows that representation, with one modification:
rather than being treated as predicates, proper nouns are second arguments to the predicate
named/2. Thus, (5.2.a) is represented by the conditions in (5.2.b).

(5.2.a) Bob kisses Alice.
(b) [named(1, bob), named(2, alice), kiss(1, 2)]

This representation poses several problems for the design goals of CONSTRAIN: First, with
such a representation it is awkward to distinguish between events and states. Although that
distinction plays a relatively minor role in this implementation, it could play a major role in
an extension that incorporates Guenthner’s (1987) proposals.

Second, as was noted in Section 3 of this report, some constrainers behave differently de-

22

pending on the tense of the sentence, so it is necessary to include tense in the representation.
It would, of course, be possible to add an argument for tense to the structure shown above,
but such a solution would be, at best, unesthetic.

Third, in order to query a knowledge base using the format shown above, it is necessary to
know the predicate in advance. One can ask who Bob kisses, but one cannot ask what Bob
does. Finally, the use of redundancy rules is very awkward with this format. Given (5.3.a),
one would like to get an affirmative response to (5.3.b).

(5.3.a) Bob knows that Ted kissed Alice.
(b) Does Bob believe that Ted kissed Alice?

Using the knowledge representation in (5.2.b), it is necessary to have a separate rule for each
verb that entails believe.

In order to overcome these difficulties, this program reifies natural language predicates so
that they become arguments to Prolog predicates. (This, in effect, is the reverse of Kamp
(1981), who uses proper nouns as predicates.) Thus, the conditions in a DRS have one of
the four forms in (5.4).

(5.4.a) named(Index, Name)
(b) isa(Noun, Index)
(c) event(Tense, Event, [Arg1|Rest])
(d) state(Tense, State, [Arg1|Rest])

Event is an action verb, while State is a stative verb or an adjective. Representing the
argument(s) to a natural language predicate as a list makes it unnecessary to have separate
rules for addressing one- and two-place predicates.

Representations (5.4.a,b) are adequate for the current implementation, which assumes that
the name and/or class of an entity does not change during the time covered by a discourse.
If the program is to cover greater periods of time, tense arguments must be added to these
predicates in order to account for (5.5.a, b), for example.

(5.5.a) Bob was a boy.
(b) Bob is a man.

For affirmative statements, the addition of time reference to the knowledge representation
requires, at first glance, only a simple modification of the lexical rules. That is, the C&S
rule in (5.6.a) need only be changed to that in (5.6.b) and an additional rule be added for
saw.

(5.6.a) transitive_verb(sees,

23

lambda(A1, A2, [see(A1,A2)]))

(b) transitive_verb(sees,

lambda(pres,A1, A2,

[event(pres, see, [A1,A2])])

For negatives and questions, however, tense is determined by the form of the auxiliary, not
that of the main verb. It is necessary, therefore, to add a syntactic feature, syn:tense, to the
GULP feature structure in order to pass tense from the clause-level rule to the lexical rules.
Thus, for example, the question rule of (4.1), repeated as (5.7.a), is modified to the form
of (5.7.b). (For clarity of exposition, hold arguments are not shown, and only those feature
unification rules that are relevant to the present discussion are displayed.)

(5.7.a) question(Q) --> [does],np(NP),vp(VP).

(b) question(Q) --> {DO = syn:tense:Tense,

VP = syn:tense:Tense,

NP = syn:tense:Tense},

do(DO), np(NP), vp(VP).

(5.7.b) requires the addition of a lexical insertion rule for do and lexical rules for do and
does . The variable Tense is bound in the do rule, and its value is passed, by way of VP, to
the lexical rule for the verb. Similar modifications are needed for the PS rules that include
the copula is , passing tense to the subject complement.

(5.7.b) does not pass syn:tense only to VP; it also unifies that feature with the corresponding
feature in NP. Although nouns do not have tense (at least, in the present system, but see
the discussion of isa/2 above), nouns may be modified by attributive adjectives—states
that require tense arguments—which receive their tense from the matrix clause. Thus, every
clause-level rule must pass a tense feature to its subject, and a VP rule must pass that
feature to the direct object.

Even within the limits noted above, the addition of time reference to the knowledge repre-
sentation introduces a further difficulty: the frame problem. Given that a state obtained in
the past, does it continue into the present? For the human processor of natural language, the
frame problem is rarely a problem. He knows which states can be assumed to be permanent
(in the absence of evidence to the contrary) and which can be assumed to be momentary.
For those states that fall in between, he is able to assign a probable length of duration. This
assignment is based on real-world knowledge of the state and the participants. Acquiring
and programming such knowledge, however, is a daunting problem for artificial intelligence.
As is the case for negation, CONSTRAIN adopts a simplistic approach: a state that was true
in the past remains true in the present unless its negation in the present has been asserted.
This approach is encoded in a meaning postulate in the file DRT RED:

(5.8) state(pres, Verb, Args) :-

24

state(past, Verb, Args),

not neg([state(pres, Verb, Args)])

Proper Nouns

A further extension that is independent of processing constrained clauses is the treatment
of proper nouns. Kamp (1981) assigns a discourse referent to each proper noun, and then
equates those referents that are arguments to the same name; thus, there can be only one
individual for each name. CNS&G take the opposite approach, allowing for more than one
individual with a particular name. Each proper noun is assigned a unique integer, and there
is no way to show that two instances of Bob refer to the same individual.

CONSTRAIN takes a middle road. Within a discourse (a list of words and punctuation
marks), all instances of a proper noun are assumed to refer to the same individual. The first
rule for a proper noun treats it as a pronoun, seeking a match in the input universe. If a
match is found, the new instance is assigned the same discourse referent; otherwise a new
discourse referent is generated.

Between discourses that apply to the same knowledge base, however, the program allows
for the possibility that a new instance of a name refers to a different individual. Before the
input string is sent to the parser, the rule preprocess/2 creates a list of the proper nouns in
the input, eliminates duplication, and queries the user about each of the names that appears
in the knowledge base. If the user responds that this is the same (i.e. last mentioned) or the
previous individual of that name, the appropriate named/2 and gender/2 propositions are
placed in the initial DRS, K0; otherwise the parser will generate a new discourse referent for
the name. To allow correct application of this procedure, when the assert/query module of
DRT PRO2 encounters a named/2 clause it first retracts that clause, if it is present in the
knowledge base, and then adds it with asserta/1 to insure that it will be the next such
clause to be accessed.

(Note that pronominal anaphora can only be resolved within a discourse. In order to address
a discourse referent in the knowledge base, it is necessary to refer to that individual by name.)

Answering a Query

A final modification to CNS&G that is necessary for the handling of constrained clauses but
also applies to other clauses is an extension of the mechanism for querying the knowledge
base. A query in CNS&G can only ask a yes/no question: given (5.9.a), one may query
(5.9.b), but not (5.9.c,d).

25

(5.9.a) Bob kissed Carol.
(b) Did Bob kiss Carol?
(c) Who kissed Carol?
(d) Whom did Bob kiss?

The first problem is to find a place to put the answer. The CNS&G program would handle
questions by converting the list of queried propositions to a conjunction in the Prologization
step and passing that conjunction to assert_or_process/1, That predicate in turn calls
test(Goal, Result) and prints Result. test/2 uses the built-in predicate call/1 to test
that conjunction. Result is bound to ‘yes’ if the call succeeds and ‘no’ if it fails.

The first step in this extension to that program is to expand the possibilities for Result.
test(Goal, Result), after displaying the goal that is being queried, calls test_list(Goal,
Result). If the latter call fails, Result is bound to ‘INSUFFICIENT DATA’; otherwise it
returns the value assigned by test_list/2.

test_list/2 tries three methods for assigning a value to Result. The first method is that
of CNS&G, converting the list of propositions to be queried into a conjunction and calling
that conjunction; if the call is successful, Result is bound to ‘AFFIRMATIVE.’ The next
method checks the knowledge base for neg(Goal); if that check succeeds, Result is bound
to ‘NEGATIVE.’ Thus, this implementation replaces Prolog’s negaQtion-as-failure with true
negation. However, this procedure is not complete; a query will return ‘NEGATIVE’ only if
an identical list of propositions exists as an argument to neg. Consequently, the response to
(5.10.b) will be ‘INSUFFICIENT DATA.’

(5.10.a) Bob did not kiss a woman.

named(p0, bob),

neg([isa(X, woman), event(past, kiss, [p0, X])])

(b) Did he kiss a pretty woman?

query([isa(Y, woman), state(past, pretty, [Y]),

event(past,kiss,[p0, Y])])

If neither of the above methods succeeds, test_list/2 enters a recursive loop that calls
query(Goal, Result) on the head of the list of queries and than calls test_list/2 on the
remainder of the list. This recursion is necessary in order to handle wh-questions.

At first glance, the treatment of wh-questions might seem a trivial matter. One need only
leave the discourse referent for the interrogative word unbound, so that query/2 will seek
to bind it. However, the CNS&G parser leaves the discourse referents of all common nouns
unbound until the clean-up step is reached, at which point it is impossible to distinguish
the referents that should be bound from those that should remain free. To overcome this
difficulty, the CONSTRAIN parser unifies the pertinent syn:arg with the atom wh. A query
containing wh will not unify with any clause in the knowledge base, so the first two methods

26

for test/2 will fail for such a clause. (Note that the treatment of interrogative who/who is
quite distinct from that for relative who/whom, which unifies the syn:index of the relative
pronoun with that of its antecedent.) When query/2 encounters such a clause, it uses the
built-in predicate set_of/3 on a copy of the clause with wh replaced by a variable. It then
uses get_id_list/2 to produce a list of names of those discourse referents or, if they are
not named, of their classes. Result is then bound to that list.

The recursion on test_list terminates when one of three conditions is met:

(5.11.a) The input list is empty and Result is bound.

(b) The input list is empty and Result is free (it is neither ‘NEGATIVE’ nor a
discourse referent). Result is then bound to ‘AFFIRMATIVE.’

(c) The input list can be satisfied by one of the non-recursive methods. Result is
then bound to that Result.

Note that if Result is bound by query/2, test_list(Goal, Result) cannot unify with the
non-recursive methods.

Constrained Clauses: Say Class

The extensions to CNS&G described above provide the tools necessary for the addition
of constrained clauses to the language handled by the extended program. The first step
in adding such clauses is the development of a representation of the embedded clause, an
implementation of the proposition markers used by Spencer-Smith (1987) and Asher (1986).
The representation chosen is an additional knowledge base predicate, prop(Index, Clause).
This structure is created by the following PS rule:

(5.12) nouncl(NC, [], []) -->

{ NC = syn:index:Index,

NC = sem:in:A,

S = sem:in:[drs([],[])|A],

S = sem:out:[DRS,drs(U, Con)|Super],

NC = sem:scope:in:[drs([Index|U],

[prop(Index,DRS)|Con])|Super],

NC = sem:scope:out:DRSList,

NC = sem:out:NewDRSList },

[that], s(S, [], []),

{ add_to_topmost_drs(Index,[prop(Index, DRS)],DRSList,

NewDRSList) }.

27

The hold lists in (5.12) must be empty in order to prevent an empty category’s referring to
an element outside its governing category. Like the rules for quantified NPs and negated
sentences, (5.12) first conses an empty DRS to the input DRS; that DRS is filled in as
S is processed, becoming DRS. The remaining NC unification rules convert Index and DRS

into a prop/2 structure and create the output. After the DCG rule has instantiated those
bindings, the rule add_to_topmost_drs/4 elevates Index and the prop/2 structure to the
toplevel DRS.

The nouncl rule is called by the rules VP → V NC and S → it BE (not) Adj NC, which bind
the syn:class feature of V to ‘mental.’ The ‘mental’ feature contrasts with the features
‘transitive’ and ‘intransitive,’ in the case of verbs, and ‘common,’ in the case of adjectives.
The syn:class feature in a lexical insertion rule determines which lexical rule will be called,
and the distinction must be reflected in the lexicon.

These modifications allow the program to handle clauses constrained by the Say Class of
constrainers. Such clauses are simply added to the DRS and are shielded from further truth
evaluation. Thus, the program at this point will properly handle the discourse in (5.13).
(Responses to queries are shown below the queries.)

(5.13.a) Bob said that Ted kissed Alice.

(b) Did Bob say that Ted kissed Alice?
AFFIRMATIVE

(c) Who said that Ted kissed Alice?
bob

(d) Did Ted kiss Alice?
INSUFFICIENT DATA

(e) What did Bob say?
event(past, kiss, [ted, alice])

Regret Class Constrainers

In order to extend the set of constrainers that the program handles to the Regret Class,
the PS rule that calls the nouncl-rule must call check_factive(NC, X) after the DCG rule
completes feature bindings. NC is the feature structure of the constrained clause (actually,
only the sem:out feature is used), and X is that of the constrainer’s category (verb or adjec-
tive). check_factive/2 tests the constrainer with factive(Constrainer), a redundancy
rule in DRT LEX. If the test succeeds, add_to_topmost_drs/4 elevates the discourse ref-
erent(s) and condition(s) of the constrained clause to the toplevel DRS and the sem:out

feature of X is bound to the result. If the test fails, the sem:out feature of X is bound to
that of NC. Crucially, check_factive/2 makes no distinction between positive and negative
constrainers, although different rules are necessary to handle the two structures.

28

Given this addition to the program, if say in (5.13) is replaced by regret , the response to
(5.13.c) is AFFIRMATIVE. Thus, the program is able to handle Regret Class constrainers
properly. Since the Know Class differs from the Regret Class only for first-person subjects,
and since this parser does not handle first-person NPs, the latter class is subsumed by the
former; in fact, three of the five factive constrainers included in the program are effectively
in the Know Class. The parser is also limited to constrained clauses in the that S form, and
Suspect Class constrainers are factive only in the poss-ing form, so that class is omitted from
consideration.

Implicational relationships between know on the one hand and think and believe on the
other are captured in lexical redundancy rules in DRT RED. Another redundancy rule takes
a rather optimistic view of learning: that if someone has learned something, he knows it.
With these additions, the program will handle the following discourse:

(5.14.a) Carol learned that Bob kissed Alice.

(b) Did Bob kiss Alice?
AFFIRMATIVE

(c) Does Carol know that Bob kissed Alice?
AFFIRMATIVE

(d) Does Carol believe that Bob kissed Alice?
AFFIRMATIVE

True Class Constrainers

As Kiparsky and Kiparsky (1970) note, the truth contribution of a clause embedded under
a factive verb depends only on the immediate constrainer; depth of embedding is irrelevant.
It is for this reason that check_factive/2 can work in the parser, even though depth of
embedding is not available at the time the rule is called. In fact, if the treatment of such
clauses were deferred, the constrainer might be buried in a list (e.g. within prop/2) and
not available for examination. That independence does not hold for clauses constrained by
True Class constrainers. Such clauses are true only if the constrainer is true (i.e. a toplevel
assertion or the complement of a factive), and the constrainer’s truth value is not available
when the constrainer is being parsed. Furthermore, the effect of a True Class constrainer
is dependent on its polarity, and that informa tion also may not be available when the
constrainer is being parsed. Thus, the treatment of complements of such constrainers must
be deferred to the processing step of the program.

CNS&G uses the predicate note/1 to assert the output of the Prologization step to the
knowledge base. That rule would simply assert its argument. CONSTRAIN expands note/1
considerably so that it tests its argument before asserting it. One modification that has gone
unremarked is that note/1 first attempts to retract the clause before asserting it, then uses

29

asserta/1 rather than assertz/1, as in CNS&G. These steps eliminate duplication in the
knowledge base and insure that the most recently evoked clauses are at the head of the
knowledge base. It is the latter feature that allows proper nouns to be identified across
discourses. A further modification that is made necessary by the addition of True Class
constrainers is the elimination of double negation; if the argument to neg/1 is itself a neg/1,
the argument of the inner negation is processed and asserted.

The only clauses that reach note/1 for processing are those that are not shielded from truth
evaluation—initially, toplevel assertions and conditions that have been raised to toplevel by
check_factive/2. Implications, including those created from universally quantified NPs,
have been converted into proper Prolog rules and are subject to the constraints imposed by
the interpreter. Clauses that constitute the conditions of negations and of embedded clauses
remain in a list, an argument to neg/1 or prop/1, and are not sent to note/1 on their own.

The representation of a True Class constrainer has the form state(Tense, State, [X]),
where State is the constrainer and X is the discourse referent for the embedded prop/1.
When note/1 encounters a clause of that form, it calls the disjunctive query
(true(State); certain(State)). These predicates, similar to factive/1, identify those
constrainers whose complements are to be asserted to the knowledge base when the con-
strainer is positive. If the call succeeds, prop(X, PropList) is called and PropList is
Skolemized and processed. The original argument to note/1 is also asserted.

Processing PropList may bring a new True Class constrainer to note/1. Thus, a clause
embedded successively under True Class constrainers will eventually come to note/1 to
be asserted. However, if a Say Class constrainer intervenes, the sequence will be blocked.
Thus, (5.15.c) will receive AFFIRMATIVE if (5.15.a) has been entered, but INSUFFICIENT
DATA if only (5.15.b) has been entered.

(5.15.a) It is true that it is certain that Ted kissed Carol.
(b) It is true that it is possible that Ted kissed Carol.
(c) Did Ted kiss Carol?

Since PropList is a list of conditions, there is no universe to provide the set of discourse
referents to be Skolemized, so set_of_args(PropList, Args) must be called to collect those
referents. Actually, this predicate was already necessary. This program, like C&S, raises the
discourse referents of proper nouns to toplevel during parsing. CNS&G does not do so, so
these referents are available in the subordinate universe when an implication is Skolemized.
Thus, this program must call set_of_args/2 before Skolemizing an implication.

note/1 follows a similar procedure in the case of neg([state(Tense, State, [X])]). In
this case, however, the disjunctive query is (true(State); possible(State)); which iden-
tifies those constrainers for which, when negated, the negation of the complement should be
asserted.

30

note/1 is also used to handle the discourse shown in (5.16), the last of the extensions to
CNS&G.

(5.16.a) Alice thinks that Ted kissed Carol.

(b) Alice is right.

(c) Did Ted kiss Carol?
AFFIRMATIVE

Because think is a Say Class constrainer, (5.16.c) will receive INSUFFICIENT DATA if it
only has (5.16.a) to work on. In order to handle (5.16.b), it is necessary to find what she
is right about and process that proposition appropriately. The following clause for note/1

accomplishes that.

(5.17) note(state(Tense, Truth, [X])):-

(Truth == right ; Truth == wrong),

(event(Tense, _, [X,P]) ;

state(Tense, _, [X,P])),

prop(P, Prop),

note_truth(Prop, Truth).

If Truth is bound to ‘right’ or ‘wrong,’ note/1 seeks an event or state whose subject is X and
whose complement is an embedded clause. It then passes Prop and Truth to note_truth/2,
which asserts Prop or its negation, according to the value of Truth. If the clause to be
asserted already exists in the knowledge base, note_truth/2 simply advises the user; if the
opposite of the clause exists there, it is retracted before the new clause is asserted. This is a
rather simple-minded treatment of belief revision, but CONSTRAIN assumes that anything
entered by the user is true unless it is constrained.

6 CONCLUSION

This report has presented an extension of Discourse Representation Theory that allows the
representation of embedded noun phrases whose truth evaluation demands special treatment
(constrained clauses), treatment that is determined by the constrainer (verb or adjective) of
the embedded noun phrase. It has also described an implementation of DRT, CONSTRAIN,
that takes an English language input (which may contain such clauses) and transforms it
into a Prolog knowledge base that can be queried. Both the theory and the implementation
remain at the experimental stage; both must be extended considerably before they can be
used as a natural language interface for practical programs. In this section we consider some
of the necessary extensions.

31

The most needed extension to the implementation is a proper treatment of negation. CON-
STRAIN replaces the negation-as-failure of Prolog with true negation, but in so doing it
trades one form of unsoundness for another. CONSTRAIN will return NEGATIVE as the
response to a query only if the knowledge base contains a clause neg(Query) such that the
elements in the query exactly match those in Query. Thus, CONSTRAIN may return IN-
SUFFICIENT DATA to a query when the knowledge base contains information that entails
the response NEGATIVE.

With a more complete treatment of negation, proper treatment of disjunction may be added.
CONSTRAIN can parse a disjunction and add it to the knowledge base, but it is unable
to use those disjunctions in order to infer conclusions. As was noted in Section 4, a more
complete treatment of negation will make possible a more adequate treatment of disjunction.

Improved treatment of negation and disjunction are matters of the DRT-to-Prolog portion
of CONSTRAIN. An extension needed at the other end of CONSTRAIN, the parser, is the
ability to handle other syntactic types of constrained clauses: poss-ing and for-to comple-
ments. That extension is made difficult by the fact that either construction may involve
equi-NP deletion. Given such an extension to the parser, it should be possible to add other
constrainers that take VP complements to the language handled by CONSTRAIN.

Other needed additions to the parser are the facilities to handle subordinating conjunctions
and sentence adverbials (e.g. probably, certainly). The former require a knowledge repre-
sentation that allows non-constrained clauses to be addressed in a manner like those that
are arguments to prop/2. One possibility for such a representation is the event markers of
Guenthner (1987). Handling sentence adverbials is a relatively simple but time-consuming
matter. The machinery for DRS construction already exists in CONSTRAIN, but it will be
necessary to add to each sentence rule a new version for each possible adverbial position.

Extensions of the implementation will, of, course, be required by extensions to the theory.
The current version of DRT is limited to a very small subset of natural language. Many
extensions to the theory are required before it can handle a useful range of natural language.
The most obviously needed extensions are the ability to handle definite NPs and plural NPs.
Although definite NPs are usually anaphoric and thus could be treated in the same fashion
as pronouns, the head noun of a definite NP is often not identical to that of its antecedent
(e.g. the two may be synonyms). Furthermore, definite NPs are not infrequently exophoric
or generic, and an implementation would need to have some means of distinguishing between
the possibilities.

Another needed extension to the theory is a formalism for specifying arguments that are
not syntactically indicated (e.g. sell requires, conceptually, a price, but that argument is
not syntactically obligatory). Handling this argument requires default specifications and a
means of determining whether the default value applies.

These extensions, both to the implementation and to the theory, probably require user
interaction. The implementation may need to query the user about the scope of negation,

32

non-anaphoric definite NPs, and default values. With these extensions, DRT can provide a
useful natural language interface to a knowledge base.

References

[1] Asher, N. 1986. Belief in discourse representation theory. Journal of Philosophical Logic
15:127–89.

[2] Chomsky, N. 1965. Aspects of the Theory of Syntax. Cambridge, MA: MIT Press.

[3] Covington, M. 1987. GULP 1.1: An extension of Prolog for unification-based grammar.
ACMC Research Report 01–0021, The University of Georgia, Athens.

[4] Covington, M., D. Nute, N. Schmitz, and D. Goodman. 1988. From English to Prolog
via Discourse Representation Theory. ACMC Research Report 01–0024, the University
of Georgia, Athens.

[5] Covington, M. and N. Schmitz. 1988. An Implementation of Discourse Representation
Theory. ACMC Research Report 01–0023, The University of Georgia, Athens.

[6] Goodman, D. 1988. An Implementation of and extension to discourse representation
theory: Translating natural language to discourse representation structures to Prolog
clauses. Unpublished master’s thesis, The University of Georgia, Athens.

[7] Guenthner, F. 1987. Linguistic meaning in discourse representation theory. Synthese
73:569–98.

[8] Guenthner, F., H. Lehman, and W. Schonfeld. 1986. A Theory for the representation
of knowledge. IBM Journal of Research and Development 30:1.39–56.

[9] Johnson, M., and Klein, E. 1986. Discourse, Anaphora, and Parsing. CSLI Research
Report 86–63, Stanford University.

[10] Kamp, H. 1981. A Theory of truth and semantic representation. In J. Groendendijk,
T. Janssen, and M. Stokhof (eds.) Formal methods in the Study of Language, 277–322.
University of Amsterdam.

[11] Kamp, H. 1985. Unpublished discourse representation theory project description, Uni-
versity of Texas, Austin.

[12] Kiparsky, P., and C. Kiparsky. 1971. Fact. In D. Steinberg and L. Jakobovits (eds.),
Semantics, 345–369. New York: Cambridge University Press.

[13] McCawley, J. 1981. Everything that Linguists have Always Wanted to know about Logic.
Chicago: The University of Chicago Press.

33

[14] McCawley, J. 1988. The Syntactic Phenomena of English. Chicago: The University of
Chicago Press.

[15] Shieber, S. 1986. An Introduction to Unification-based Approaches to Grammar. CSLI
Lecture Notes No. 4, Stanford University.

[16] Spencer-Smith, R. 1987. Semantics and discourse representation. Mind and Language
2:1.1–26.

[17] Smith, W. 1989. Problems in applying discourse representation theory. Research Report
AI–1989–04, The University of Georgia, Athens.

[18] Zeevat, H. 1989. A compositional approach to discourse representation theory. Linguis-
tics and Philosophy 12:95–131.

34

