Research Report AI-1993-03

The Enhancement of a Dependency
Parser for Latin

Ulrich Koch

Artificial Intelligence Programs
The University of Georgia
Athens, Georgia 30602-7415 U.S.A.

Copyright © 1993 Ulrich Koch

The enhancement of a dependency parser for Latin

Ulrich Koch
Winter 1993

Artificial Intelligence Programs
University of Georgia
Athens, GA 30602

Reprinted with corrections, February 1994

Introduction

This paper describes a dependency parser for a tiny subset of Latin. It is the enhancement of a parser that is
described in [Covington 1990a]. The parsing algorithm can be used for parsing variable-word-order languages
other than Latin. Information about variable-word-order languages can be found in [Covington 1990b)].
The parser is written in GULP [Covington 1987, Covington 1989], which extends Prolog by providing
feature structure unification.
The features that I have added to the parser include verb subcategorization and checks for a minimal
and/or maximal number of dependencies of certain types.

1 Dependency grammar

The traditional approach to parsing is phrase-structure grammar, which analyzes a sentence by dividing it
into constituents. The constituents are divided in turn, until we arrive at lexical constituents, i.e. single
words.

Dependency grammar [Tesniere 1959, Schubert 1987, Mel’¢uk 1988], by contrast, does not rely on the
notion of constituents.! Instead, the main notion is that of a dependency relation between two words.
This relation is not symmetric; one word (called the “dependent”) is said to depend on the other one (the
“governor” or “head”).

Because only word-to-word links are established, dependency grammar can easily handle variable word
order and discontinuous constituents. Phrase-structure grammar is not well suited to handling these phe-
nomena.

Dependency relations can be represented graphically by drawing an arrow from the governor to the
dependent, like in the following example.

Canis magnus felem agitat.
Dog big cat chases.

‘The big dog chases the cat.’

If we put each governor above its dependent(s), we get a tree-like representation:

THowever, constituents can easily be defined in terms of dependency.

agitat
canis felem

magnus
Such a tree can be printed out on the computer in indented form:

agitat
canis
magnus
felem

In the above examples, agitat is the main verb of the sentence, and canis is the subject. Accordingly,
the dependency relation between these two words is said to be of type SUBJECT. Another example of a
dependency type is MODIFIER, which is used for the relation between a noun and an adjective that modifies
it. In graphical representations of dependency analysis, dependency types can be attached to the links:

SUBJ

Canis dormit.
Dog sleeps.

‘The dog sleeps.’

Not every dependency type is possible for each syntactic category?. For instance, only a verb can have a
subject.

2 Feature structure unification

The variety of dependency grammar that is used by the parser is unification-based [Shieber 1986]. That is,
categories are represented as feature structures, and features are assigned values by unification.

2.1 Feature structures

A feature structure is a set of feature-value pairs. A feature is just a name, where the names of all the
features in a feature structure must be distinct. A value can be anything from another name or a number
to another feature structure. Here are some examples of feature structures:

a:z height:5 11" cat:verb
by weight: 123 lbs. object: cat:moun
c:z age:24 case:acc

The order of feature-value pairs within a feature structure is not important. For instance, the following
two feature structures are considered the same:

a:r C:Z

b:y a:x

c:z b:y
In GULP, the value of a feature can be any Prolog term, or another feature structure, or a Prolog term
containing feature structures. GULP uses the functor ‘: :’ to represent feature structures. For example, the

feature structure

cat:verb
pers:2

num:pl

2Syntactic categories include verb, noun, adjective, verb phrase, and noun phrase.

looks like this in GULP:

cat:verb :: pers:2 :: num:pl

2.2 Unification without variables

Unification is an operation that, when performed on two feature structures, yields a third feature structure.
It can also be viewed as a way of testing if two feature structures match in a certain way. This test can
succeed or fail. The unification operator is written as ‘LI’

In the simplest case of unification, all the features in the feature structures are distinct. Unification is
then reduced to set union, as in the following example.

cat:verb

cat:verb L [) l] — | pers:2
pers:2 numapt | = Zum !
‘D

It works the same way if feature-value pairs are doubled in the second feature structure:

cat:verb cat-verb cat:verb
ers:2 U numol | pers:2
e P num:pl

Unification fails if the two feature structures contain the same feature with different values, as in this
example.

cat:verb cat:noun
pers:2 num:pl

} fails!
2.3 Unification with variables

So far, the values of the features have been constants. However, variables® can take their place. If a feature f
occurs with value a in one feature structure and with value X in the other feature structure, then unification
assigns a to X.

In the following example, the variable C' is set to verb:

cat:verb cat:C cat:verb
ers:2 U numenl | pers:2
e P num:pl

It is also possible to have multiple variables.

cat:verb cat:verb
ers: 2 u cat:C" | _ pers:2

pers: num:pl ’

num:N num:pl

Here verb is assigned to C, and pl is assigned to N.
The following unification fails, because the variable X cannot take on two different values at the same
time:

[cat:verb] L [cat: X

num: X num:pl

] fails!

If the value of a feature is given as a variable in both feature structures, the variable names simply become
equivalent. In this example, C' becomes equivalent to D.

cat:C cat-D cat:C cat:D
L = | pers:2 = | pers:2
pers:2 num:pl
num:pl num:pl

3By convention, variables begin with an uppercase letter, whereas constants begin with a lowercase letter.

It is also possible to have variables inside feature structures that are themselves values of features. Here
is an example where C' is set to noun:

cat:verb

cat:verb
cat:verb
. (] . cat:C = . cat:noun
object: [cat:noun] object: object:
case:acc case:acc

Of course, a variable can also stand in for a whole feature structure:

[cat:verb

cat:verb cat:verb
object:O }

object: { object: [

case:acc

cat:noun
case:acc

cat:noun]

3 The problems

3.1 Constraints on the number of dependencies

There are restrictions on the number of dependencies of certain types that can be established for any one
word. One of these restrictions says that a preposition must have an object. For instance, the following
sentence is ungrammatical because per has no object.

*Canis agitat felem per.
*Dog chases cat through.

“*The dog chases the cat through.’
Furthermore, a preposition can have at most one object. Here is a sentence that violates this constraint.

*Canis agitat felem per domum silvam.
*Dog chases cat through house forest.

“*The dog chases the cat through the house the forest.’

Each of these constraints applies to dependencies of a certain type, and it specifies either a minimal or a
maximal number of dependencies of this type that can be established.

The minimal number of dependents can be 0 or 1, and the maximal number of dependents can be 1 or
infinity.

In the above examples, the dependency type is OBJECT, the minimal number of dependents is 1, and the
maximal number of dependents is also 1.

3.2 Verb subcategorization

Restrictions on the type of dependencies for each category are not sufficient. For example, the following
sentence is ungrammatical.

*Canis felem dormit.
acc
*Dog cat sleeps.

“*The dog sleeps the cat.’

The reason is that some verbs can have an object in the accusative case while others cannot. This is expressed
by subdividing the verb category into different subcategories. Verbs like dormire that cannot have an object
might belong to subcategory 1, for example, and verbs that can have an accusative object might belong to
subcategory 2. The subcategory of a verb can then be added to its features:

phon:dormit
cat:verb
subcat:1
num:sing
pers:3

4 The algorithm

4.1 The algorithm of the original parser

The original parser accepts words from an input list one by one. For each word W, it first tries to insert it
as the governor of words read earlier. Then it tries to make W depend on a previous word.
To accomplish this, the parser maintains three lists:

1. The input list,
2. the list of previous words, and

3. the head list.

Words are read from the input list one by one and added, in reverse order, to the list of previous words.
The head list contains all the words, together with their direct and indirect dependents, that do not (yet)
depend on other words. In the end, the head list becomes the result of the parsing process. It should then
contain only the main verb, with all the other words directly or indirectly depending on it.

4.2 Checking the number of dependencies

The check for the maximal number of dependencies is done while parsing. Every time the parser tries to
establish a dependency of type T between a word G as the governor and a word D as the dependent, it
checks whether the maximal number of dependencies of type T has already been established for G. If so,
the parse fails. Otherwise, D is inserted into the list of dependents of type T for G.

The minimal number of dependencies is checked after the parsing proper. For every word W in the input
string, the parser checks if for each possible dependency type T', the minimal number of dependents of type
T is present for W. If so, this test is done recursively for each dependent. Otherwise, the parse fails.

4.3 Checking the verb subcategory

The subcategory information is included in the lexical entry of each verb. It is used by D-rules like the
following one.

cat:verb cat:noun
-
subcat:2 case:acc

When applying such a rule, the parser unifies the feature structure on the left hand side with a feature
structure that is derived from a lexical entry. This ensures that the subcategories match.

5 The implementation

5.1 The implementation of the original parser

5.1.1 The features

Words are represented as feature structures. The features serve the following purposes:
phon: This feature contains the written form of the word.

cat, subcat: The category and subcategory of the word.

case, num, gen, pers: These are agreement features. For example, a noun and an adjective that modifies it
must agree in case, number, and gender.

dep: The value of the dep feature of each word is a list of the dependents of that word. After a whole
sentence has been parsed successfully, every word hangs directly or indirectly from the main verb (see
Figure 1).

[phon:agitat 1
cat:verb
subcat:2
phon:felem phon:canis
cat:noun cat:noun
dep:[(accobject, [| case:acc -1, 1), (subject, [| case:nom -], 0)]-]

Figure 1: Feature structure for the sentence Canis felem agitat.

5.1.2 D-rules

D-rules are implemented as clauses with the principal functor ‘<-’. For example, the D-rule shown above as
cat:verb cat:noun
-
subcat:2 case:acc
would look like this in the original parser:

cat:verb :: subcat:2 <- /* governor */
cat:noun :: case:acc. /* dependent */

My enhancement of the parser uses a different representation (see section 5.2).

5.2 The implementation of my enhancements

The features that are crucial for my enhancement of the parser are subcat and dep. The subcat feature
indicates the subcategory of a verb. The value of dep is an open list (i.e., one with an uninstantiated tail)
of ordered triples. The components of each of these triples are:

1. a dependency type,
2. an open list of dependents (feature structures), and
3. the minimal number of dependencies (of the type mentioned in 1.) that must be established.

That is, the dependents of a word are sorted by dependency type. A verb with a subject and an accusative
object might look like in Figure 1.

In a lexical entry, the dep feature is only partly instantiated for words with required dependents. For
instance, this is a lexical entry for the verb agitare. It contains e.g. no triple for the subject, because there
need not be a subject in a Latin sentence.*

word(phon:agitat :: cat:verb :: subcat:2 :: num:sing
:: pers:3 :: dep:[(accobject,_,1)|_1).

For words that do not require dependents, the dep feature is not instantiated at all in the lexical entry:

word(phon:dormit :: cat:verb :: subcat:1 :: num:sing
: pers:3).

4The number and person of the verb indicate the personal pronoun that serves as logical subject, if no other subject is
present.

Further instantiation takes place during the parsing process, when dependents are added.

While the lexicon contains the minimal number of dependencies, the maximal number of dependencies is
stored in the D-rules. This makes the parser more efficient, because the maximal number is checked during
parsing, i.e. when the D-rules are being accessed anyway. The minimal number, by contrast, cannot be
checked until after the parsing proper, when it would be inefficient to go through all D-rules again.

A D-rule also contains the dependency type that it establishes, as can be seen in the following example.

drule(cat:verb :: subcat:2, /* governor */
cat:noun :: case:acc, /* dependent */
accobject, /* dependency type */
1). /* max. number of dependencies */

When displaying the parsed structure of a sentence, the parser prints out the dependency type for each
dependent of a word. The output for the sentence Canis felem agitat looks like this:

agitat
felem accobject
canis subject

A The code

The code was written in the Quintus Prolog version of GULP. A complete listing follows.

/* File LATIN.GLP */

/* This is the dependency parser.
There is also a Russian version, which contains mistakes
(this Latin one is believed to be mistake-free).
This is not Prolog, this is GULP. */

/%

Unification-based dependency grammar

* *

* This sample parser parses Latin sentences.
* It considers word order to be totally free.

*/

/*
* Vocabulary

*/
g_features([phon,cat,subcat,case,num,gen,pers,dep]) .

/* The value of dep (if any) is an open list of
ordered triples.
The components of each triple are: the dependency type,
an open list of words (FS’s), and the minimal number of
dependencies (of this type) that must be established.
The minimal number of dependencies can be 0 or 1. */

word(phon:felis :: cat:noun :: case:nom :: num:sing
: gen:masc :: pers:3).

word(phon:felem :: cat:noun :: case:acc :: num:sing
: gen:masc :: pers:3).

word(phon:feles :: cat:noun :: case:nom :: num:pl
: gen:masc :: pers:3).

word(phon:feles :: cat:noun :: case:acc :: num:pl
: gen:masc :: pers:3).

word(phon:canis :: cat:noun :: case:nom :: num:sing
11 gen:masc :: pers:3).

word(phon:canem :: cat:noun :: case:acc :: num:sing
:: gen:masc :: pers:3).

word(phon:canes :: cat:noun :: case:nom :: num:pl
:: gen:masc :: pers:3).

word(phon:canes :: cat:noun :: case:acc :: num:pl

:: gen:masc :: pers:3).

word(phon:silva :: cat:noun :: case:nom :: num:sing
:: gen:fem :: pers:3).

word(phon:silvam :: cat:noun :: case:acc :: num:sing
: gen:fem :: pers:3).

word(phon:silvae :: cat:noun :: case:nom :: num:pl
: gen:fem :: pers:3).

word(phon:silvas :: cat:noun :: case:acc :: num:pl

: gen:fem :: pers:3).

word(phon:agitat :: cat:verb :: subcat:2 :: num:sing
:: pers:3 :: dep:[(accobject,_,1)|_1).
word(phon:agitant :: cat:verb :: subcat:2 :: num:pl
:: pers:3 :: dep:[(accobject,_,1)|_1).
word (phon:dormit :: cat:verb :: subcat:1 :: num:sing
:: pers:3).
word (phon:dormiunt :: cat:verb :: subcat:1 :: num:pl
: pers:3).
word(phon:albus :: cat:adj :: case:nom :: num:sing
: gen:masc).
word(phon:album :: cat:adj :: case:acc :: num:sing
: gen:masc).
word(phon:albi :: cat:adj :: case:nom :: num:pl
: gen:masc).
word(phon:albos :: cat:adj :: case:acc :: num:pl
: gen:masc).
word(phon:ater :: cat:adj :: case:nom :: num:sing
:: gen:masc).
word(phon:atrum :: cat:adj :: case:acc :: num:sing
:: gen:masc).
word(phon:atri :: cat:adj :: case:nom :: num:pl
: gen:masc).
word(phon:atros :: cat:adj :: case:acc :: num:pl
: gen:masc).
word(phon:atra :: cat:adj :: case:nom :: num:sing
: gen:fem).
word(phon:atram :: cat:adj :: case:acc :: num:sing
: gen:fem).
word(phon:atrae :: cat:adj :: case:nom :: num:pl
: gen:fem).
word(phon:atras :: cat:adj :: case:acc :: num:pl
it gen:fem).
word (phon:parvus :: cat:adj :: case:nom :: num:sing
:: gen:masc).
word (phon:parvum :: cat:adj :: case:acc :: num:sing
:: gen:masc).
word(phon:parvi :: cat:adj :: case:nom :: num:pl
:: gen:masc).
word(phon:parvos :: cat:adj :: case:acc :: num:pl

:: gen:masc).

word (phon:magnus :: cat:adj :: case:nom :: num:sing
: gen:masc).

word (phon:magnum :: cat:adj :: case:acc :: num:sing
: gen:masc).

word(phon:magni :: cat:adj :: case:nom :: num:pl
:: gen:masc).

word (phon:magnos :: cat:adj :: case:acc :: num:pl

:: gen:masc).

word (phon:per :: cat:prep :: case:acc :: dep:[(object,_,1)[_]1).
word(phon:in :: cat:prep :: case:acc :: dep:[(object,_,1)[_]1).
/*

* D-rules (initial set, ignoring word order)

/*
* drule(Head,Dependent ,DepType,Max)
* Head is also known as ’governor’.
* Max is the maximal number of dependencies (of type
* DepType) that can be established.
* Max can be 1 or infinity.
*/

drule(cat:verb :: pers:P :: num:N,
cat:noun :: case:nom :: pers:P :: num:N,
subject, 1).

drule(cat:verb :: subcat:2,
cat:noun :: case:acc,

accobject, 1).
drule(cat:verb, /* no constraint on subcat of verb:

C

prepobject is an adjunct */
at:prep,

prepobject, infinity).
drule(cat:noun :: case:C :: num:N :: gen:G,

C

at:adj :: case:C :: num:N :: gen:G,

modifier, infinity).
drule(cat:prep :: case:C,

c

o
/%
*

*/
par

P
c

par

par

/%
*
*

*/

che

at:noun :: case:C,
bject, 1).

Dependency parsing

se(InputList,Result) :-
arse_aux (InputList, [], [],Result),
heck_req_deps_of _list(Result).

parse_aux(InputList,PrevWords,HeadList,Result)

where InputList is the list of words (or rather FS)

yet to be examined, PrevWords contains (in reverse order)
the words already examined, HeadList contains one or more
structures built so far, and Result will be the output of
the parsing process.

se_aux([],_,Result,Result).
se_aux([Head|Tail] ,PrevWords,HeadList,Result) :-
parse_item(Head,PrevWords,HeadList,NewHeadList),

parse_aux(Tail, [Head|PrevWords] ,NewHeadList ,Result).

/* Work along InputList calling parse_item for
each element. */

check_req_deps (Word)
checks if all required dependents of Word are present

ck_req_deps(Word) :-

Word = dep:Deps,

C.

/%
*
*
*

*/

heck_num_deps (Deps) .

check_req_deps_of_list(Words)
for each element of Words, which is a (possibly open)
list, checks if all its required dependents are present

check_req_deps_of_list(Words) :-
nonvar (Words) ,
Words = [Word|Taill,
check_req_deps(Word) ,
check_req_deps_of_list(Tail).

check_req_deps_of_list(Words) :-
nonvar (Words) ,
Words = [1. /* at end of non-open list */

check_req_deps_of_list(Words) :-
var(Words). /* at end of open list */
/*
* check_num_deps (DepList)
* for each element of DepList, which is an open list of
* triples, checks if the minimal number (0 or 1) of
* dependents of the type in question is present

*/

check_num_deps(DepList) :-

nonvar (DepList),
DepList = [(DepType,Words,1)|Taill,
nonvar (Words) , /* there is at least one dependent of

this type */
check_req_deps_of_list(Words),
check_num_deps(Tail) .

check_num_deps(DepList) :-
nonvar (DepList),
DepList = [(DepType,Words,0)|Taill,
check_req_deps_of_list(Words),
check_num_deps(Tail) .

check_num_deps(DepList) :- var(DepList). /* at end of list */
/*

* parse_item(Item,PrevWords,HeadList,NewHeadList)

*

* inserts Item into HeadList in the proper place,

* giving NewHeadList.

*/

parse_item(Item, [],[],[Item]) :- !.
/* If this is the first word, simply add it to
HeadList. */

parse_item(Item,PreviWords,HeadList,NewHeadList) :-
/* First insert Item above as many items as it
can dominate...*/
try_inserting_as_head(Item,PrevWords,HeadList,HeadList2),
/* Then add Item to HeadList...*/
HeadList3 = [Item|HeadList2],
/* Then insert Item as dependent of another word
if possible. */
try_inserting_as_dependent (Item,PrevWords,HeadList3,
NewHeadList) .
/%
* try_inserting_as_head(Item,Preonrds,HeadList,NewHeadList)

* Search through Headlist and insert Item above one or more
* pre-existing items, if possible.

*/

try_inserting_as_head(Item,_,[],[]).
/* We have recursed all the way down Headlist;
we may or may not have attached Item above things
encountered along the way. */

10

try_inserting_as_head(Item,_, [Head|HeadList] ,NewHeadList) :-
/* Insert Item above Head, and remove Head from HeadList. */
drule(Item,Head,DepType,Max),
Item = dep:Deps,
insert_into_deps(Head,Deps,DepType,Max),
try_inserting_as_head(Item,_,HeadList,NewHeadList).
/* Recurse down the rest of HeadList. */

try_inserting_as_head(Item,_, [Head|HeadList],
[Head|NewHeadList]) :-
/* Can’t do it or choose not to do it, so continue without
doing it. */
try_inserting_as_head(Item,_,HeadList,NewHeadList).

/%

* try_inserting_as_dependent (Item,PrevWords,HeadList,
* NewHeadList)

*

* inserts Item as a dependent of an earlier word

* if possible.

try_inserting_as_dependent (Item,PrevWords,HeadlList,
NewHeadList) :-
member (PrevWord,PrevWords) ,
drule(PrevWord, Item,DepType,Max),
PrevWord = dep:PrevDeps,
insert_into_deps(Item,PrevDeps,DepType,Max),
delete_element (Item,HeadList,NewHeadList).

try_inserting_as_dependent (Item,_,HeadList,HeadList).
/%

* insert_into_deps(Item,Deps,DepType,Max)

* Inserts Item into Deps (in the proper place) as

* dependent of type DepType iff less than Max

* dependencies of this type have already been established.
* (Deps is an open list of triples, Max is either 1 or

* infinity.)

*/

insert_into_deps(Item,Deps,DepType,_) :-
var(Deps), /* open list is empty */
Deps = [(DepType, [Item|_1,0)|_].
/* insert with O required dependents */

insert_into_deps(Item,Deps,DepType,1) :-

nonvar (Deps) ,
Deps = [(DepType,Words,_)|_],
var(Words), /* there are no dependents of this type yet */

Words = [Item|_].

insert_into_deps(Item,Deps,DepType,infinity) :-
nonvar (Deps) ,
Deps = [(DepType,Words,_)|_],
insert (Item,Words).

insert_into_deps(Item,Deps,DepType,Max) :-
nonvar (Deps) ,
Deps = [(OtherDepType,_,_)|Tail],
\+ (OtherDepType = DepType),
insert_into_deps(Item,Tail,DepType,Max) .
/*
* lex_scan(InputString,ScannedList)
* Performs lexical scan, replacing each word with its
* lexical entry.

*/

lex_scan(InputString,ScannedList) :-

11

lex_scan_aux (InputString,_,ScannedList).
lex_scan_aux([1,_,[1).

lex_scan_aux([Word|Taill ,PrevWord, [ScannedWord|ScannedTail]) :-
ScannedWord = phon:Word,
word (ScannedWord) ,
lex_scan_aux(Tail,ScannedWord,ScannedTail) .

/%
* Manipulation of open lists (with uninstantiated tails)

*/

/%

* new_tail(List,Tail)

* where List has an uninstantiated tail,

* instantiates the tail of List to Tail.

* NOTE: The empty open list is _, not [_].
*/

new_tail(Y,X) :- nonvar(Y), Y=[_|Taill, new_tail(Tail,X).
new_tail(X,X).

/%

* insert(Item,List)

* adds Item to the end of List, which is (and
* remains) an open list.

*/

insert(Item,List) :- new_tail(List,[Item|_]).
/%

* Utilities

*/

/*
* once(Goal)
* used instead of Arity/Prolog snips

*/

once(X) :- X, !'.

/*

* delete_element (Element,01ldList,NewList)

* deletes Element from 0ldList giving NewList.
*/

delete_element (_,[1,[]).
delete_element (Element, [Element|Tail] ,Tail) :- !.

delete_element (X, [Y|Z], [YINewZ]) :-
\+ (Y = X), delete_element(X,Z,NewZ).
/*
* display_dependency_tree(HeadList)
* Displays a dependency tree in indented form,
* including dependency type information.
* (HeadList may be open.)
*/

display_dependency_tree(HeadList) :-
display_dependency_indented(HeadList,none,0) .

/%
* display_dependency_indented (HeadList,DepType, Indent)

12

* Auxiliary predicate for display_dependency_tree/1.

* DepType is the dependency type of HeadList’s elements.
* (A dependency type of ’none’ is not printed out.)

* Indent is the indentation.

*/

display_dependency_indented(HeadList,_,_) :-

var(HeadList). /* at end of open list */

display_dependency_indented (HeadList,_,_) :-
nonvar (HeadList) ,
HeadList = []J. /* at end of non-open list */

display_dependency_indented(HeadList,DepType,N) :-
nonvar (HeadList),
HeadList = [Head|Taill,
nonvar (Head) ,
tab(N),
Head = phon:Hphon,
write (Hphon),
display_dep_type (DepType) ,
nl,
Head = dep:Hdeps,
NewN is N+2,
display_triple_list_indented(Hdeps,NewN),
display_dependency_indented(Tail,DepType,N) .
/*
* display_triple_list_indented(Deps,N)
* Displays the elements of Deps, which is an open list
* of triples.

*/

display_triple_list_indented(Deps,_) :-
var (Deps) .

display_triple_list_indented(Deps,N) :-
nonvar (Deps) ,
Deps = [(DepType,Words,_)|Taill,
display_dependency_indented(Words,DepType,N),
display_triple_list_indented(Tail,N).

/*
* display_dep_type (DepType)
*/

display_dep_type(none) :- !.
display_dep_type(DepType) :- write(’ ’), write(DepType).
/*

* exhibit (HeadList)

* Normal way of displaying a list of feature structures.

*/

exhibit(X) :- var(X), !, write(X), nl.
exhibit([]) :- !,nl.
exhibit([Head|Taill) :- !,nl,exhibit(Head),exhibit(Tail).

exhibit(X) :- g_display(X).

/* Test */

pause :- nl,
write(’Press Ctrl-Break to quit, any other key’),
write(’ to look for alternatives...’),

13

nl,
get0 (L),
nl.

try(String) :-

/* String is a list of words as atoms */

lex_scan(String,X),

write(String),nl,

once((write(’Scanned string: ’),nl,exhibit(X),nl,nl)),

parse(X,Parsed),

Parsed = [_], /* we only want unitary parses */

once((write(’Parsed structure: ’),nl,
display_dependency_tree(Parsed))),

pause,
fail.
testl :- try([agitat,canis,per,silvam,felem]).
test2 :- try([canes,agitant,feles]).
test3 :- try([agitat,agitat]). /* not a sentence */
test4d :- try([agitat,canis,felem]).
test5s :- try([agitat,felem,canis]).
test6 :- try([canis,agitat,felem]).
test7 :- try([canis,felem,agitat]).
test8 :- try([felem,canis,agitat]).
test9 :- try([felem,agitat,canis]).
test10 :- try([agitat,canis,per,felem]).

/* is rejected */

testll :- try([agitat,canis,parvus,ater,per,atram,silvam,
felem,album]).
test12 :- try([dormit,canis]).
testl13 :- try([dormit,canis,per,silvam]).
/* is accepted: the anomaly is semantic rather than

syntactic */

test14 :- try([dormit,canis,felem]). /* is rejected */

References

[Covington 1987]

[Covington 1989]

[Covington 1990a]

[Covington 1990b]

[Mel’¢uk 1988]

[Schubert 1987]

[Shieber 1986]

[Tesniere 1959]

Covington, Michael A. (1987) GULP 1.1: an extension of Prolog for unification-based
grammar. Research report 00-0021, Advanced Computational Methods Center, University
of Georgia.

Covington, Michael A. (1989) GULP 2.0: an extension of Prolog for unification-based
grammar. Research report AI-1989-01, Artificial Intelligence Programs, University of
Georgia.

Covington, Michael A. (1990) A dependency parser for variable-word-order languages.
Research report AI-1990-01, Artificial Intelligence Programs, University of Georgia.

Covington, Michael A. (1990) Parsing discontinuous constituents in dependency gram-
mar. Computational Linguistics 16.4:234-236.

Mel’éuk, Igor A. (1988) Dependency syntax: theory and practice. Albany: State Univer-
sity Press of New York.

Schubert, Klaus (1987) Metatazis: contrastive dependency syntax for machine translation.
Dordrecht, Holland: Foris.

Shieber, Stuart M. (1986) An introduction to unification-based approaches to grammar.
(CSLI Lecture Notes, 4.) Stanford: CSLI.

Tesniere, Lucien (1959) Eléments de syntaze structurale. Paris: Klincksieck.

14

