
Research Report AI-1994-02

Discontinuous Dependency Parsing of
Free and Fixed Word Order:

Work in Progress

Michael A. Covington

Artificial Intelligence Programs
The University of Georgia

Athens, Georgia 30602 U.S.A.



Discontinuous Dependency Parsing of
Free and Fixed Word Order:

Work in Progress

Michael A. Covington
Artificial Intelligence Programs

The University of Georgia
Athens, GA 30602–7415 U.S.A.

mcovingt@ai.uga.edu

April 1994

Abstract

The dependency–based free–word–order parsing algorithm of Cov-
ington (1987, 1990, 1992) can be extended to handle partly or com-
pletely fixed word order, while preserving its psychologically realistic
preference for near attachment. By adding predictivity, this algorithm
can be adapted to parse left–branching and right–branching structures
in less stack space than center–embedded structures, just as the human
parser appears to do.

1 Introduction

Most parsing algorithms assume that words occur in a fixed order, and
that the input string can be divided into continuous substrings which are
constituents. Discontinuous dependency parsing (DDP; Covington 1987,
1990, 1992) makes no such assumptions. It treats free word order as the
simplest case, and treats restrictions on word order as additional constraints.
Thus, DDP has an advantage in parsing languages with extensive word order
variability.

In this paper I briefly note how to extend DDP to handle fixed as well
as variable word order, and then briefly analyze some aspects of its psycho-
logical reality and suggest improvements.

1



2 Dependency grammar

The relation of head to dependent (governor to governed, subcategorizand
to argument) has become increasingly important in modern grammatical
theory. Dependency grammar dispenses with phrase structure trees and
takes the head–dependent relation as basic. Specifically:

• Every word is the dependent of exactly one head (except the head of
the sentence, which is not a dependent at all).

• Any number of words can be dependents of the same head.

• Thus, the dependency links form a tree whose root is the head of the
sentence (normally taken to be the main verb).

Given two words X and Y , where X is the head of Y , or the head of the
head of Y , and so on, we say that X is superior to Y and Y is inferior
to X.

Constituents still exist, but they are a derived rather than a fundamental
concept. A phrase (constituent) consists of any word together with all words
that are inferior to it.

Suitably constrained dependency grammars are equivalent to suitably
constrained X–bar phrase–structure grammars (Covington 1990). The in-
tent of DDP, however, is to relax the constraints and thereby handle free
word order.

In this paper I am not arguing for any particular theory of dependency
grammar. Accordingly, I will assume only that there is a grammar which,
given two words, can tell us whether they can be linked, and if so which is
the head and which is the dependent.1

3 Original DDP algorithm

The original DDP algorithm (Covington 1987, 1990, 1992) closely resembles
bottom–up shift–reduce parsing. The parser accepts words in order, one by
one, holding them until they can be attached to the dependency tree. Two
lists are maintained: Wordlist, containing all words that have been accepted

1For more concrete proposals see Hellwig (1986); Jäppinen, Lahtola, and Valkonen
(1986); Mel’čuk (1988); Schubert (1987); and others. The full version of this paper will
contain a more ample review of the literature. The most thorough dependency analysis
of English is that of Hudson (1991).

2



so far, and Headlist, containing words that have been accepted but have not
yet been attached as dependents of anything else. When the whole sentence
has been parsed, Headlist contains only one word, the head of the sentence.
The algorithm is as follows:

while there are words remaining in the input string:
(1) Accept a word; call it W and push it onto Wordlist.
(2) Search the previous elements of Wordlist, most recent first,

and attach W as a dependent of one of them if possible.
Otherwise, push W onto Headlist.

(3) Search Headlist, most recent first, and attach zero or more
of its elements as dependents of W , removing them from Headlist.

end

This is a nondeterministic algorithm; it was implemented in Prolog so that
backtracking would be done automatically. Tests with parsing of Latin
and Russian showed comparatively little backtracking in ordinary sentences,
even those with very scrambled word order.2

Despite being able to handle unlimited word order freedom, DDP has a
psychologically realistic preference for near attachment, because it searches
both lists in most–recent–first order and therefore tries near attachments
first.

4 Adaptation for fixed word order

To handle fixed word order, DDP needs to be able to:

• Specify that a phrase must be continuous;

• Specify the order of the head relative to each of its dependents;

• Specify the mutual order of the dependents of a head.

4.1 Continuity (adjacency, projectivity)

I define continuity (alias contiguity, adjacency, projectivity) as a property
of individual head–to–dependent links, not of phrases:

2DDP is also the basis of the Korean parsers of Kwon, Yoon & Kim (1990) and Kwon
& Yoon (1991).

3



The link between head H and dependent D is continuous if and
only if every word between H and D is subordinate to H.

Implicit in this definition is the hypothesis that the grammar can ac-
count for partly fixed word order by specifying continuity requirements for
individual links, rather than for whole phrases. This appears to be the case,
although of course in many cases continuity requirements will apply to all
the links in a phrase.

As an example of a head that must be continuous with one of its depen-
dents but not with another, consider the English sentences:

John pressed the key quickly.
John quickly pressed the key.
Quickly John pressed the key.

The verb has two dependents, quickly and the key. The link from pressed to
the key is continuous; that from pressed to quickly is not.

Continuity is implemented in the parser as follows:

• When searching previous words for the head of W , do not search all
of Wordlist; look only at the word preceding W , its head, its head’s
head, and so on. That is, instead of following Wordlist, follow a chain
of dependency links.

• When searching Headlist for dependents of W , use only the most recent
element of Headlist. (Having done so, the parser can then use the next
most recent element, etc., always working from the top of the stack
and never skipping an element.)

This is essentially the “adjacency” requirement as implemented by Hudson
(1989) and Fraser (1989).

4.2 Head–dependent order

As is well known, the linear order of head and dependent plays a major role
in word order typology: some languages are predominantly head–initial, and
others are head–final.

Implementing head–initial or head–final order in DDP is easy: leave out
half of the search process, depending on what restriction is to be enforced.
Specifically:

4



• When searching Headlist for dependents of W , do not attempt links
that are specified as head–initial.

• When searching previous words for the head of W , do not attempt
links that are specified as head–final.

These restrictions can also be implemented as preferences rather than abso-
lute constraints: instead of leaving out parts of the search, the parser could
attempt those parts of the search last, after other possibilities have been
exhausted.

4.3 Dependent–dependent order

The mutual order of two dependents of the same head is harder to implement
cleanly. It is also much less often needed in the description of languages,
although English does provide one apparently good example:

Give the students an example.
∗Give an example the students.

The indirect object of the verb always comes before the direct object.3

¿From the dependency standpoint, this is a global order requirement —
it involves at least two dependency links, not just one. The appropriate
place to account for it is in the lexical entry of the verb, which already must
mention both links in order to state that the verb is ditransitive.

Specifically, the mutual order of these two arguments can be accounted
for as part of the subcategorization mechanism. Koch (1993) added a verb–
class–based subcategorization system for DDP. If this is replaced with a
list–based system along the lines of Shieber (1986), the grammar can require
the parser to fulfill subcategorization requirements in a specific order, and
thus require that one specific dependent must occur closer to the head than
another.

This analysis presumes that only subcategorized dependents will be sub-
ject to mutual–order constraints.

3This construction is also problematic for GB theory: if both objects are complements
of the same verb and hang from the same node, they should have the same grammatical
relation to the verb, which they do not.

5



5 Further remarks

5.1 Predictivity

Conspicuously absent from present versions of DDP is any form of predic-
tivity; the parser accepts words one by one but does not attempt to predict
what will come next. Accordingly, DDP cannot exploit Hawkins’ (1993)
principle that the type of each constituent (or, in dependency terms, the
head of each word) should be identified as soon as possible.

The performance of DDP could be improved by adding predictivity. This
would make DDP into an analog of left–corner parsing rather than pure
bottom–up parsing. The mechanism would be that whenever a word is
accepted and is not a dependent of a word already seen, its head should
be entered into the dependency tree as a node that is not yet lexically
instantiated.

5.2 Psychological reality

The appeal of the DDP shift–reduce algorithm is that it provides a way
to accept free word order while maintaining a realistic preference for near
attachment. The need for such a preference is shown by phrases such as
mother’s father’s brother’s house, in which the order of the three possessives
does not appear to be free in any known language (if it were, a series of
N possessives would be N–factorial ways ambiguous, as noted by Johnson
1985).

Indeed, DDP overcomes a well–known psycholinguistic objection to shift–
reduce parsing. Ordinary shift–reduce parsing is not symmetrical with re-
gard to left and right branching: it uses up stack space when parsing right–
branching but not left–branching structures. By contrast, the parsers in our
heads apparently parse right– and left–branching structures with equal ease,
and run out of stack space only on center–embedded structures (Johnson–
Laird 1983, Abney and Johnson 1991, Resnik 1992).

DDP overcomes this limitation because it attaches dependents (argu-
ments or modifiers) to heads one at a time, rather than waiting for con-
stituents to be complete. Thus, it can deal with the words one at a time in
either the left–branching structure4

4Pretending for the moment that the English ’s possessive is a true genitive case.
Taking ’s to be a clitic, the example works equally well but the processing involves more
steps.

6



[NP [NP [NP [NP Lincoln’s ] doctor’s ] dog’s ] dinner ]

or its right–branching Latin counterpart:

[NP statua [NP imperatoris [NP legionis [NP Gallorum ]]]]
‘statue of the commander of the legion of the Gauls’

In the English example, the parser accepts Lincoln’s, then accepts doctor’s
and attaches Lincoln’s to it as a dependent, then accepts dog’s and attaches
doctor’s as a dependent of it, and so on. In the Latin case, the parser accepts
statua, then accepts and attaches imperatoris as a dependent of statua, then
accepts and attaches legionis as a dependent of imperatoris, and so on. In
neither case is a series of words held on the stack.5

DDP does use stack space when parsing center–embeddings, discontin-
uous constituents, and sequences of premodifiers. For example, big fuzzy
black dog would be parsed by holding big, fuzzy, and black on the stack,
and then attaching them all at once to dog. But if predictivity were added
to DDP, these premodifier sequences could be parsed without using stack
space, because DDP could then hypothesize the head noun and start attach-
ing dependents to it before it is actually found.

References

Abney, Steven, and Johnson, Mark. (1991). “Memory requirements and local
ambiguities for parsing strategies.” Journal of Psycholinguistic Research 20:
233–250.

Covington, Michael A. (1987). “Parsing variable–word–order languages with
unification–based dependency grammar.” Research Report 01–0022, Ad-
vanced Computational Methods Center (now Artificial Intelligence Pro-
grams), University of Georgia.

Covington, Michael A. (1990). “Parsing discontinuous constituents in de-
pendency grammar.” Computational Linguistics, 16: 234–236.

5DDP is, then, “arc–eager” in the sense of Abney and Johnson (1991), but it is not
clear that Resnik’s (1992) formalization of the concept of “arc–eager” applies to it, because
there is no composition of top–down and bottom–up expectations. Rather, what makes
DDP “arc–eager” is the fact that it deals with grammatical relations one by one rather
than waiting to complete constituents.

7



Covington, Michael A. (1992). “A dependency parser for variable–word–
order languages.” In Computer assisted modeling on the IBM 3090: Papers
from the 1989 IBM Supercomputing Competition, ed. by K. R. Billingsley,
Hilton U. Brown III, and Ed Derohanes, vol. 2, pp. 799–845, Athens, Ga.:
Baldwin Press.

Fraser, Norman M. (1989). “Parsing and dependency grammar.” UCL Work-
ing Papers in Linguistics, 1: 296–319.

Hawkins, John A. (1993). “Heads, parsing and word–order universals.” In
Heads in Grammatical Theory, ed. Greville G. Corbett, Norman M. Fraser,
and Scott McGlashan, 231–265, Cambridge University Press.

Hellwig, Peter. (1986). “Dependency unification grammar.” In Proceedings,
COLING–86, 195–198.

Hudson, Richard. (1989). “Towards a computer–testable Word Grammar of
English.” UCL Working Papers in Linguistics, 1: 321–339.

Hudson, Richard. (1991). English Word Grammar. Cambridge, Mass.: Black-
well.

Jäppinen, Harri; Lahtola, Aarno; and Valkonen, Kari. (1986). “Functional
structures for parsing dependency constraints.” In Proceedings, COLING–
86, 461–463.

Johnson, Mark. (1985). “Parsing with discontinuous constituents.” In Pro-
ceedings, ACL–85, 127–132.

Johnson–Laird, Philip N. (1983). Mental models. Cambridge, Mass.: Harvard
University Press.

Koch, Ulrich. (1993). “The enhancement of a dependency parser for Latin.”
Research Report AI-1993-03, Artificial Intelligence Programs, The Univer-
sity of Georgia.

Kwon, H. C., and Yoon, A. (1991). “Unification–based dependency parsing
of governor–final languages.” In Proceedings, Second International Workshop
on Parsing Technologies, 182–192.

Kwon, H. C.; Yoon, A.; and Kim, Y. T. (1990). “A Korean analysis system

8



based on unification and chart.” In Proceedings, Pacific Rim International
Conference on Artificial Intelligence ’90, 251–256.

Mel’čuk, I. A. (1988). Dependency Syntax: Theory and Practice. State Uni-
versity Press of New York.

Resnik, Philip. (1992). “Left–corner parsing and psychological plausibility.”
In Proceedings, COLING–92, 191–197.

Schubert, Klaus. (1987). Metataxis: Contrastive Dependency Syntax for Ma-
chine Translation. Dordrecht: Foris.

Shieber, Stuart M. (1986). An Introduction to Unification–Based Approaches
to Grammar. (CSLI Lecture Notes, 4.) Stanford: CSLI.

9


