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Abstract. We consider a reinterpretation of the rules of default logic. We make Reiter’s
default rules into a constructive method of building models, not theories. To allow reasoning
in first order systems, we equip standard first-order logic with a (new) Kleene 3-valued
partial model semantics. Then, using our methodology, we add defaults to this semantic
system. The result is that our logic is an ordinary monotonic one, but its semantics is now
nonmonotonic. Reiter’s extensions now appear in the semantics, not in the syntax.

As an application, we show that this semantics gives a partial solution to the conceptual
problems with open defaults pointed out by Lifschitz [16], and Baader and Hollunder [2].
The solution is not complete, chiefly because in making the defaults model-theoretic, we
can only add conjunctive information to our models. This is in contrast to default theories,
where extensions can contain disjunctive formulas, and therefore disjunctive information.

Our proposal to treat the problem of open defaults uses a semantic notion of nonmono-
tonic entailment for our logic, deriving from the idea of “only knowing”. Our notion is
“only having information” given by a formula. We discuss the differences between this and
“minimal-knowledge” ideas.

Finally, we consider the Kraus-Lehmann-Magidor [14] axioms for preferential consequence
relations. We find that our consequence relation satisfies the most basic of the laws, and the
Or law, but it does not satisfy the law of Cut, nor the law of Cautious Monotony. We give
intuitive examples using our system, on the other hand, which on the surface seem to violate
these laws, no matter how they are interpreted. We make some comparisons, using our
examples, to probabilistic interpretations for which the laws are true, and we compare our
models to the cumulative models of Kraus, Lehmann, and Magidor. We also show sufficient
conditions for the laws to hold. These involve limiting the use of disjunction in our formulas
in one way or another.

We show how to make use of the theory of complete partially ordered sets, or domain
theory. We can augment any Scott domain with a default set. We state a version of Re-

1Version presented at the Third International Symposium on Artificial Intelligence and Mathematics,
Fort Lauderdale, Fla, January 1994. Research supported by NSF grant IRI-9120851.
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iter’s extension operator on arbitrary domains as well. This version makes clear the basic
order-theoretic nature of Reiter’s definitions. A three-variable function is involved. Finding
extensions corresponds to taking fixed points twice, with respect to two of these variables.
In the special case of precondition-free defaults, a general relation on Scott domains induced
from the set of defaults is shown to characterize extensions. We show how a general notion
of domain theory, the logic induced from the Scott topology on a domain, guides us to a
correct notion of “affirmable sentence” in a specific case such as our first-order systems. We
also prove our consequence laws in such a way that they hold not only in first-order systems,
but in any logic derived from the Scott topology on an arbitrary domain.

Content areas: Knowledge representation, nonmonotonic reasoning, terminological rea-
soning, mathematical foundations
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1 Introduction

Since the introduction of non-monotonic logic (by McDermott, Doyle, Reiter, McCarthy,
Moore, and others), much effort has been spent on finding semantical systems for differing
forms of nonmonotonic logic. There is by now considerable agreement that models for a
nonmonotonic logic should be ordered by some criterion of “preference”, so that formulas
can be valid in all “preferred” models instead of all models. That way one can believe in
the validity of a formula, though it is not in fact valid. This way of unifying the semantics
of differing logics was initiated by Shoham [26].

One logic, for a long time, resisted attempts to provide it with a preferential model
semantics: Reiter’s default logic [21]. Etherington [9] gave a preferential semantics, involving
sets of first-order models rather than simple models. Other model theories by now are known.
Many of these come from other nonmonotonic logics by means of a translation of default
theories to the other logics. The article [25] gives a good proposal, as well as an overview of
other proposals, including Lin and Shoham [18] and Lifschitz [17].

Our approach differs from all of the above proposals. We regard Reiter’s default systems
as semantic, not syntactic notions. Our preference relation is purely information-theoretic:
the most preferred partial models of a sentence are the ones containing the minimal informa-
tion affirming it. The central concept of Reiter’s system – that of an extension – is viewed as
a way to add default information, via a nonmonotonic fixed-point operator, to one of these
minimal partial models. This is a simple but radical reconstruction of default reasoning. We
hope that it will prove to be an interesting and profitable one.

Having introduced default systems as semantic notions, we are free to adopt any of
a number of ordinary logics as ways to reason about the semantics generated by default
structures. The best analogy may be to the semantics of programming languages. Scott
domain theory is one way to assign meanings (denotations) to programs. In analogy, we use
Scott domain theory to assign meanings to systems of defaults. In the theory of programming,
logics such as Hoare logic, dynamic logic, and temporal logic are used to reason about
program properties. In analogy, we could consider first-order logic, modal logic, or some
other language to reason about systems of defaults2.

In the paper, after having stated a domain-theoretic version of defaults, we apply our
notion to the case of first-order logic. We equip ordinary first-order logic with partial models,
also called situations. We interpret negation in the strong Kleene three-valued sense, as in
the work of Doherty and Lukaszewicz [8] and others. A new aspect of our construction is that
we can have partial models which respect background constraints. It is then straightforward
to add defaults to these partial models.

One application of this new semantics is to the problem of correctly interpreting open
defaults. Lifschitz in [16], and Baader and Hollunder in [2], have shown that Reiter’s treat-
ment leads to conceptual difficulties. To this end, we introduce a notion of nonmonotonic
consequence, as in the Kraus, Lehmann, and Magidor [14] postulates for a cumulative non-

2Notice that this gives us a possibility to combine reasoning about programs with reasoning about defaults,
because we use domain theory as a common semantic base.
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monotonic logic. In a given structure, a formula ϕ nonmonotonically entails a formula β iff
β is positively satisfied in every default extension of any minimal positive model of ϕ. We
show how to treat the problem of open defaults using our approach. The result seems to
give a satisfactory treatment of examples like the Baader-Hollunder ones. However, we view
this as a preliminary step in the treatment of such phenomena.

Several points should be made about our definition of nonmonotonic consequence. First,
it uses extensions as models, not theories. Second, the intuitive interpretation of our entail-
ment is “if I can confirm only the information given by ϕ, then I can believe (skeptically)
β.” This idea is related to, but is not the same as, the notion of “only knowing” [15], [11].
We try to capture it by the use of minimal models, which of course we must define The word
“positive” is occasioned by our three-valued Kleene semantics. Finally, the use of default
models is in some sense anticipated by the work of Guerreiro and Casanova [10] and Lifschitz
[16]. Our definition is much more radical than theirs. Although their semantics involves a
fixed-point construction in model-theoretic space, they still regard extensions as theories.
Lifschitz in particular also uses a “fixed-universe” construction to deal with extensions for
open defaults, as we do. However, our extensions are directly constructed by default rules
operating in semantic space, whereas for Lifschitz, extensions are only to be found in the
syntactic domain.

Another comparison to the set of “minimal-knowledge” approaches mentioned, for exam-
ple, by Schwarz and Truszczynski, is in order. For these approaches, knowledge is measured
by sets of formulas, or theories. One starts with a given set I of formulas. In an intuitive
sense, one wants to capture the fact that the theory I is the only theory that is known. To
do this, one looks at potential models M of I and chooses inclusion-maximal such. Since
M ⊆ N implies Th(N) ⊆ Th(M), we see that maximizing models implies minimizing knowl-
edge. (We note here that one speaks about modal formulas, for which models are sets of
propositional valuations, so that it makes sense to compare models by inclusion.) The pre-
cise details of the differences between the model constructions of Schwarz and Truszczynski,
and those of other authors, such as Halpern and Moses [11], need not concern us here, be-
cause we are treating a differing notion: that of the minimal information conveyed by a
formula or theory. This information is measured by the inclusion relation on partial models
directly, and does not contain any kind of self-knowledge. If, for example, given the formula
Bird(tweety), the minimal information conveyed by the formula is a partial model of the
formula simply consisting of the one “first-order tuple” 〈〈bird, tw; 1〉〉. Given a theory I, then
correspondingly we look at all the minimal partial models of the formulas in I. We call this
the the minimal information conveyed by the theory I. This is really the approach taken
by circumscription as well, since circumscription would rule out the possibility that Tweety
is a penguin by minimizing the class of abnormal birds. (A formal comparison between our
method and circumscription is made difficult by the fact that we work with partial models
and circumscription works with total ones.)

To sum up this discussion, we might say that minimizing knowledge is done by maximizing
models. For us, minimizing information is done by minimizing models. Then we use default
systems to recreate belief spaces from minimal information.
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The organization of the paper is as follows. We motivate our semantics by means of
examples taken from Lifschitz, Baader, and Hollunder. We then introduce the formal defi-
nition of default models, and state our representation theorems for default systems on Scott
domains. Next we present the syntax and semantics of our logic. Next we prove our results
on preferential consequences, simultaneously with what we hope are interesting counterex-
amples to the general laws. Finally we provide a comparison with other approaches in the
literature.

There is more to the story of default models. In [24] we show that default models and
their logics solve some of the semantic problems with Reiter’s default logic. This includes,
in particular, a treatment of subjective degrees of belief, as in the work of Bacchus, Halpern,
et al. [3]. Further, in [22] we have shown that the propositional modal version of our
logic, using weak rather than strong Kleene negation, has a sound and complete equational
axiomatization, and an NP-complete validity decision problem.

2 On open defaults

Many of the interesting applications of default logic involve the notion of an open default: a
default rule of the form

α : β1, . . . , βn

γ
(1)

where some of the formulas may contain free variables. The standard treatment of these
defaults, from Reiter’s work, is to assume that the default (1) stands for the set of all its
ground instances.

Lifschitz, in [16], points out that this treatment can make the effect of a default weaker
than intended. He considers the default theory with one axiom P (a) and one default

: ¬P (x)

¬P (x)
. (2)

This default is intended to express that P (x) is assumed to be false wherever possible. It
should allow us to prove the formula

∀x(P (x)↔ (x = a)). (3)

However, all that (2) sanctions are the literals ¬P (t) for ground terms t different from a.
Lifschitz notes that the problems of ground terms should be overcome by a treatment

of default logic involving the realm of models. In that realm, one can talk about domain
elements directly, without having to refer to their syntactic names. He cites a result of
Guerreiro and Casanova [10] characterizing extensions of closed theories using a model-
theoretic fixpoint construction, and then generalizes this construction to the case of open
defaults.

Our approach to these problems is similar in spirit to that of Lifschitz, but much more
direct. We regard a default rule like (2) not as a syntactic rule at all, but as an “algorithm”

5



for building partial models directly. To see what we mean, assume that P is an atomic
predicate. Let M be a set to be used as the universe of a model. We will build models out
of “tuples” or infons of the form

〈〈P,m; i〉〉 (4)

where P is the given predicate symbol, m ∈ M , and i, the polarity of the infon, is either 0 or
1, standing for “definite truth” or “definite falsehood.” In the given example, we introduce
a whole collection of defaults of the form

: 〈〈P,m; 0〉〉
〈〈P,m; 0〉〉 (5)

where m ∈M . Our model-building procedure is as follows. We start with a minimal model
for P (a), namely

{〈〈P,ma; 1〉〉}. (6)

where ma is an element of M interpreting the constant a. The defaults (5) can fire to add
infons to this minimal model, providing they do not conflict in polarity with 〈〈P,ma; 1〉〉.
Clearly, then, all of the infons 〈〈P,m; 0〉〉 can be added to the model, for m �= ma. In our
theory, the resulting model is the unique default model-theoretic extension of (6). In this
extension, the formula (3) holds.

Another, more subtle, problem with Reiter’s treatment of open defaults involves the
actual reduction of open to closed defaults, which requires a preliminary step of Skolemizing
all the axioms and the consequents of all defaults. An example due to Baader and Hollunder
makes this point clear, in the context of trying to add defaults to terminological logics.

Consider a concept description expressing that an adult man is married to a woman, or
is a bachelor: Translated into ordinary first-order logic, our terminological concept definition
(Tbox) reads

AM(x) =def ∃y(Spouse(x,y) ∧Woman(y)) ∨ Bachelor(x) (7)

where we understand as a background condition that spouses are unique. In addition, one
assumes (in the Abox) specific facts about specific individuals: Tom is married to a woman
named Mary. Instantiating the concept description

and representing the specific facts, we get the formula

Abox = AM(Tom) ∧ Spouse(Tom,Mary) ∧Woman(Mary). (8)

For defaults, one assumes, chauvinistically, that if it is consistent that an individual is not a
woman, then that individual is not a woman:

: ¬Woman(x)

¬Woman(x)
. (9)

Baader and Hollunder show that Skolemizing the above formulas using Reiter’s method
yields anomalous results: Tom is a bachelor married to Mary. The Skolemized version of
AM(Tom) is

(Spouse(Tom, Gordy) ∧ Woman(Gordy)) ∨ Bachelor(Tom), (10)
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where Gordy is a Skolem constant introduced to be the spouse of Tom. Because of the
disjunction in (10), the Skolemized Abox does not imply Woman(Gordy). The chauvinistic
default can fire, yielding ¬Woman(Gordy). Combined with (10) this yields Bachelor(Tom),
which is at odds with Tom’s being married to Mary.

Our approach to this problem, and solution in this example, involves defining a first-order
logic which is sensitive to constraints: laws which govern the behavior of partial models, but
which are in the background. (This is an idea taken from situation theory; see Barwise’s
book [4].) In the above case, situations must respect the constraint that “spouse” is a partial
function. To do this technically, we need to cover the basic apparatus of default model theory.

3 Default domain theory

3.1 Default Structures

First we review Scott’s idea of information systems, which can be thought of as general con-
crete monotonic “rule systems” for building Scott domains: consistently complete algebraic
cpo’s.

Definition 3.1 An information system is a structure A = (A, Con, � ) where

• A is a countable set of tokens,

• Con ⊆ Fin (A), the consistent sets,

• �⊆ Con× A, the entailment relation,

which satisfy
1. X ⊆ Y & Y ∈ Con⇒ X ∈ Con,
2. a ∈ A⇒ { a } ∈ Con,
3. X � a & X ∈ Con⇒ X ∪ { a } ∈ Con,
4. a ∈ X & X ∈ Con⇒ X � a,
5. ( ∀b ∈ Y.X � b & Y � c )⇒ X � c.

Example. We will use infons as tokens, as in Section 2. We could choose for Con any
finite set of tokens which contains no polarity clash, and we could specify X � a ⇐⇒ a ∈ X.

We extend the notion of consistency to arbitrary token sets by enforcing the compactness
property, i.e., a set is consistent if every finite subset of it is consistent. Overloading notation
a little bit, we still write y ∈ Con, even for infinite y.

Definition 3.2 An (ideal) element of an information system A is a set x of tokens which
is

1. consistent: x ∈ Con,
2. closed under entailment: X ⊆ x & X � a⇒ a ∈ x.
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The collection of ideal elements of A is written |A|.
Example. The ideal elements in the above example are exactly all of the sets of infons

containing no token clashes. This example is not terribly interesting; to get more interesting
examples in first-order logic, we introduce constraints in Section 4.

It is worth noting at this point that every consistently complete ω-algebraic partial order
can be isomorphically represented as the set of ideal elements of an information system,
ordered by subset inclusion. This is Scott’s fundamental representation theorem, and it
accounts for our claim of generality for default information systems. More of this below.

Now we come to the main definitions used in this paper. We introduce the theory of
default structures by simply adding a default component to information systems.

Definition 3.3 A default information structure is a tuple

A = (A, Con,∆, �)
where (A,Con,�) is an information system, ∆ is a set of triples of finite subsets of A. Each

triple (X, Y, Z) is written as
X : Y

Z
.

Notice that the rules in ∆ allow us to add a whole “chunk” Z of tokens by default.
The notion of deductive closure associated with information systems plays an important

role: the deductive closure G of a set G of tokens is the smallest set containing G and closed
under �. When G is a complicated big set we sometimes write [G] for G.

In default logic, the main concept is the idea of an extension. We define extensions in
default model theory using Reiter’s conditions, but extensions are now (partial) models.

The following definition is just a reformulation, in information-theoretic terms, of Reiter’s
own notion of extension in default logic. There are actually two equivalent definitions.

Definition 3.4 (Implicit definition of extensions) Let A = (A,∆,�) be a default in-
formation structure, and x a member of |A|. For any subset S, define Γ(x, S) to be the
smallest set t ⊆ A such that

• t is an ideal element;

• x ⊆ t;

• If
X : Y

Z
∈ ∆, and X ⊆ t and S ∪ Y is consistent, then Z ⊆ t.

A set y is said to be an implicit extension of x if Γ(x, y) = y.

Definition 3.5 (Explicit definition of extensions) Let A = (A,∆,�) be a default in-
formation structure, and x a member of |A|. For any subset S, define Φ(x, S) to be the
union

⋃
i∈ω φ(x, S, i), where

φ(x, S, 0) = x,

φ(x, S, i+ 1) = φ(x, S, i) ∪ ⋃{Z | X : Y

Z
∈ ∆ & X ⊆ φ(x, S, i) & Y ∪ S ∈ Con}.

y is an explicit extension of x if Φ(x, y) = y.
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By Reiter’s proofs, we know that explicit and implicit extensions are the same things.
(We have also shown this in [23].) If y is an extension of x, we write xδAy, with the subscript
omitted from time to time. We write δ(x) for the set of extensions of x.

In practice, one often focuses on normal systems, where the default rules have the form
X : Y

Y
. This is because in the general case, extensions do not exist, and the use of general

defaults is sometimes problematic in other ways. We also consider the so-called precondition-
free normal defaults, where the set X is empty. We refer to these as PC defaults.

Examples. In Lifschitz’ example, let x = {〈〈P,ma; 1〉〉}, and let the defaults be given by
Equation 2.5, regarding each infon 〈〈P,m; 0〉〉 as a singleton set Xm = {〈〈P,m; 0〉〉}. Then
the unique extension of x is

y = x ∪ {〈〈P,m; 0〉〉 : m �= ma}.

A more interesting example is the eight queens problem. We have in mind in an 8 × 8
chessboard, so let 8 = {0, 1, . . . , 7}. Our token set A will be 8 × 8. A subset X of A will
be in Con if it corresponds to an admissible placement of up to 8 queens on the board. For
defaults ∆ we take the singleton sets

{ : {〈i, j〉}{〈i, j〉} | 〈i, j〉 ∈ 8× 8}.

We may take � to be trivial: X � 〈i, j〉 iff 〈i, j〉 ∈ X. Now, if x is an admissible placement,
then the extensions y of x are those admissible placements containing x and so that no more
queens may be placed without violating the constraints of the problem.

The last example is intended to guide the reader away from the view of defaults as default
logic. In the eight queens problem, it seems desirable to have a language for reasoning about
differing placements. For example, given a placement x, is there an extension y which uses
all eight queens? This corresponds exactly to our philosophy: default systems are used
model-theoretically, and logic is used to describe default models.

We now summarize the main results on extensions from [23].

Theorem 3.1

1. Extensions always exist for normal systems.

2. If x δ y then y ⊇ x.

3. If ∆ consists only of PC defaults, then x δ y iff y = [x ∪ ⋃{X | : X

X
∈ ∆ & y ∪X ∈ Con}].

4. x δ y and y δ z implies y = z.

5. If x δ y and x ⊆ z ⊆ y then z δ y.

6. If x δ y and x δ y′ then either y = y′ or y ∪ y′ �∈ Con.
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3.2 Abstract Default Systems

This section gives a treatment of default structures from an abstract, order-theoretic per-
spective. We think that the abstract presentation of Reiter’s work is suggestive of the class
of structures to which it really applies: partial models represented as domains. This class is
useful in modeling all sorts of higher-order objects, including the type-free lambda calculus.
The use of higher-order default systems has yet to be investigated, but we think that there
could be many interesting questions about such systems.

To make the paper self contained, we recall some basic domain theoretic definitions.

Definition 3.6 A directed subset of a partial order (D,�) is a non-empty set X ⊆ D such
that for every x, y ∈ X, there is a z ∈ X, x � z & y � z. A complete partial order (cpo) is
a partial order which has a bottom element and least upper bounds of directed sets. A subset
X ⊆ D is bounded (or compatible, consistent) if it has an upper bound in D. A compact
(or finite) element a of D is one such that whenever a � ⊔

X with X directed, we also have
a � y for some y ∈ X. We write κ(D) for the set of compact elements of D, and let a, b,
etc. range over compact elements. A cpo is algebraic if each element of which is the least
upper bound of a set of compact elements. A cpo is ω-algebraic if it is algebraic and the
set of compact elements is countable. A Scott domain is an ω-algebraic cpo in which every
compatible subset has a least upper bound. By convention, we write x ↑ y if the set {x, y} is
bounded.

The basic theorem, due to Scott, relating Scott domains and information systems, is the
following.

Theorem 3.2 The collection of ideal elements associated with an information system forms
a Scott domain under inclusion. The compact elements are (the closures of) finite sets X in
Con. Moreover, every Scott domain is isomorphic to the collection of ideal elements of some
information system. Specifically we can take the token set to be the set κ(D), the coherence
relation to be the compatibility predicate of D, and X � a iff a � ⊔

X.
�

Our objective is to state a similar representation for an abstract notion of “extension”
relation on a Scott domain, involving an abstract presentation of a default system. To do
this we need to adjoin an element � to an arbitrary Scott domain D; we denote this by D�.
The top element � denotes inconsistent information. It is well known that adjoining this
element makes D� a complete lattice.

Our presentation is given as follows:

Definition 3.7 (Abstract defaults) Let (D,�) be a Scott domain.

1. A default set in D is a subset Λ of κ(D)3. We call a triple (a, b, c) ∈ Λ a default,

and think of it as a rule
a : b

c
, though this is an abuse of notation.
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2. Let u, v ∈ D�. The set of default consequences of u with guards in v is

{c | (∃a, b)((a, b, c) ∈ Λ & a � u & b ↑ v)}.
We denote by DC(u, v) the least upper bound, in D�, of this set.

We now present a domain-theoretic version of Reiter’s definition of extensions.

Definition 3.8 (Abstract extension operator) Let (D,�) be a Scott domain, and let Λ
be an abstract default system over D. Let x, v range over D. Set

Γ(x, v) = {z ∈ D� | x �DC(z, v) � z}.
We say y ∈ D is an abstract extension of x iff Γ(x, y) = y.

It is easy to see that Γ(x, v) is the least element z of D� such that (i) x � z, and (ii):
⊔{c | (∃a, b)(a, b, c) ∈ Λ & a � z & b ↑ v} � z.

This is almost word for word Reiter’s definition of his extension operator. It is also easy to
check the following result.

Theorem 3.3 Every default information system determines an extension relation isomor-
phic to the abstract extension relation on the Scott domain corresponding to the underlying

information system, via the correspondence sending a default
X : Y

Z
to the triple (x, y, z) of

compact elements determined by (X, Y, Z); and conversely via the “inverse” correspondence
from Scott domains to information systems.

�

With this result in mind, we make the following observations.
Let u, v, x ∈ D�, and fix Λ throughout. Consider the operator

Θ(x, u, v) = x �DC(u, v).

Notice that for fixed x and v, that Θ(x, u, v) is monotonic in u. Then notice, for fixed x
and v, the quantity Γ(x, v) is the least prefix-point, in u, of the operator Θ(x, u, v) on the
complete lattice D�. By the familar Knaster-Tarski theorem, it is also the least fixed point.
Moreover, the operator Θ(x, u, v) is ω- continuous in u; that is:

Θ(x,
⊔

i

ui, v) =
⊔

i

Θ(x, ui, v)

for all linearly ordered sequences ui, with i ∈ ω. Now the least fixed point of an ω-continuous
operator F on a complete lattice is given by the formula

⊔

i

F i(⊥),

where F i is the i-fold composition of F with itself.

11



Definition 3.9 (Abstract explicit extension operator) Let D be as above, and let x, v ∈
D. Define the operators Πi as follows

• Π0(x, v) = x;

• Πi+1(x, v) = x �DC(Πi(x, v), v).

Define Π(x, v) =
⊔

i Πi(x, v).

By our observation above, Π(x, v) is nothing more or less than than the least fixpoint of
λuΘ(x, u, v). Therefore,

Theorem 3.4 (Coincidence of explicit and explicit extension operators (Reiter.))

Π = Γ.

�

A consequence of all of the above results is that Theorem 3.1 holds “in the abstract”,
by the order-isomorphism going from default structures to domains with systems of defaults
given abstractly. That is, general facts about extension relations proved concretely using
information systems, continue to hold in general abstract domains.

It is natural to wonder if the equation Γ(x, y) = y can be simplified. According to the
above, Γ(x, v) is the least fixed point, in u, of the operator Θ(x, u, v). Writing this out,

Γ(x, v) = {u | x �DC(u, v) = u}.
This gives that, for y �= �, that y is an extension of x if and only if

y = {u | u = x �⊔{c | (a, b, c) ∈ Λ & a � u & b ↑ y}}.

This seems to be the simplest equation that we have in general, even for the normal default
case. However, in the precondition-free case, simpler formulas do obtain. Suppose that Λ
is a PC default system; that is, every default is of the form (⊥, a, a), where ⊥ is the least
element of D. Then Λ can be considered just to be a subset of κ(D).

Definition 3.10 The PC preferential cover δΛ determined by Λ is the binary relation on
D given by the condition

xδΛy ⇐⇒ y = x �⊔{b | (∃b ∈ Λ)(b ↑ y)}.

Using this definition, the following result can be proved directly, using the general def-
initions of domain theory. (By our remarks above, everything but item (3) follows from
Theorem 3.1.)

Theorem 3.5 Let D be a Scott domain and Λ be a PC “abstract” default system. We have
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1. ∀x ∈ D∃y ∈ D xδΛy.

2. If xδΛy then y � x.

3. xδΛy if and only if there is a B, a maximal subset of Λ such that B ∪ {x} is bounded,
which satisfies the equation

y = x �⊔{λ | λ ∈ B}.

4. xδΛy and yδΛz implies y = z.

5. If xδΛy and x � z � y then zδΛy.

6. If xδΛy and xδΛy
′ then either y = y′ or y �↑ y′.

To show how these results work, we prove (3) and (5). We do not really need to prove
(5), but the argument is fairly elegant in the abstract.

Proof of (3). Suppose xδΛy. Then

y = x �⊔{λ ∈ Λ | λ ↑ y}.
Let B be the set

{λ ∈ Λ | λ ↑ y}.
We need only check that B is a maximal subset of Λ with B ∪ {x} bounded. Let B ⊆ B′

and suppose B′ ∪ {x} is bounded.Then

y = x �⊔{λ | λ ∈ B} � x �⊔{λ | λ ∈ B′}.
So for every λ ∈ B′, we have λ ↑ y. Therefore B′ ⊆ B. This proves one direction; the
converse is similar.

Proof of (5). Let xδΛy and x � z � y. Then

y = x �⊔{λ ∈ Λ | λ ↑ y}.
Since x � z, we have

y � z �⊔{λ | λ ↑ y} � y �⊔{λ | λ ↑ y} = y.

Therefore zδΛy by definition.
A direct application of the above definition is to the problem of defaults in lexical se-

mantics of natural language, found in Young’s paper [28] on nonmonotonic sorts. There D
is chosen to be a lexical hierarchy, say for verbs, and Λ is “linguist-chosen” to reflect, for
example, preferred default verb endings.

The analogy between Theorem 3.5 and Theorem 3.1 suggests that the extension relation
of a PC default information structure is a concrete representation of any PC preferential
covering relation, and this is indeed the case. Moreover, the proof is easy given our charac-
terizations above.

13



Theorem 3.6 If Λ consists of PC defaults, then y is an extension of x if and only if x δΛ y.

Proof Consider Θ(x, u, v) for precondition-free defaults. We have

Θ(x, u, v) = x �DC(u, v) = x �⊔{b | b ∈ Λ & b ↑ v}.
This means that Θ does not depend on u and so

Γ(x, v) = x �⊔{b | b ∈ Λ & b ↑ v},
from which the desired conclusion follows.

�

Remarks.

• We will use the form of Theorem 3.5 to help us prove one of the Cautious Monotony
laws for precondition-free systems.

• The characterization in Theorem 3.6 does not generalize to normal systems. That is,
we could define

x δΛ y ⇐⇒ y = x �DC(y, y).

If y is an extension of x, then it follows that x δΛ y, but not conversely, even if Λ
is normal. To see this, let D be a Scott domain consisting of 3 elements {⊥, 0, 1},
with 0 and 1 incompatible. Let Λ = {(0, 0, 0)} (intuitively the default

0 : 0

0
.) Then

0 = ⊥ � DC(0, 0), but 0 is not an extension of ⊥. Further, neither maximal nor
minimal solutions to the above equation work either. For a counterexample to the

minimal version, add the precondition-free default
⊥ : 1

1
to the above system. Then 0

is a minimal solution, but is still not an extension.

4 Default models for first-order logic

Having covered the basics of default domain theory, we introduce our logic for default reason-
ing. To begin, let V be a countable set of variables, and fix a first-order relational signature.
(The restriction to relational signatures is just for convenience.) The syntax of our language
L is just that of ordinary FOL. We thus have atomic formulas of the form σ(p1, . . . , pn),
where σ is an n-ary relation symbol, and the pi may be constants or variables.

The language L is generated by the grammar

ϕ ::= true | false | σ(p1, . . . , pn) | x = y | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ∃xϕ | ∀xϕ
Remarks on the language:

1. The operator ¬ stands for strong Kleene negation. If we have ¬ϕ holding in some
situation, then we can be sure ϕ will never be realized in a larger situation.
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2. We introduce two other formulas by abbreviation: (ϕ → ψ) = ¬ϕ ∨ ψ, and the
biconditional ↔ similarly.

3. We could add a modality B to L. Bϕ is read “ϕ is believed.” The meaning of Bϕ is
that with respect to a situation w, ϕ holds in all extensions of w. This was done in
[22].

The semantics of this language is its nonstandard feature. Our structures will be default
information systems based on some particular set of individuals M , but we first have to
assume some background constraints on any relations which are going to be holding in such
sets M . These constraints will be used to generate the monotonic entailment relation �
in the default structure. (The defaults themselves can be arbitrary, as long as they are
precondition-free.) We can use sets C of arbitrary closed formulas of first-order logic to state
background constraints; in fact, we can use any language for which first-order structures are
appropriate models.

To interpret formulas, we first of all choose some set M of individuals. We do not fix
relations on M as in the standard first-order case, but we do choose particular individuals
to interpret the constants3. We can also interpret function symbols to be actual functions
on M , but this will not be needed in what follows.

Now, tokens of our information sustem will be infons of the form

〈〈σ,m1, . . . , mn; i〉〉
where mj ∈ M , and i ∈ {0, 1}. (This last item is called the polarity of the token.) We say
that a set s of these tokens is admissible if (i) it does not contain any tokens conflicting in
polarity, and (ii) it matches a model of C in the usual first-order sense. That is, there is a
structure

M = (M, (R1, . . . Rk))

where the Rj are relations on M of the appropriate arities, such that M is a model of C,
and such that if 〈〈σj, m1, . . . , mn; 1〉〉 ∈ s, then the corresponding Rj(m1, . . . , mn) is true.
Similarly, if 〈〈σj , m1, . . . , mn; 0〉〉 ∈ s, then the corresponding Rj(m1, . . . , mn) is false.

We have a choice in the treatment of the equality relation. One possibility is to assume
that it is interpreteted as a partial congruence relation on M . In that case, we would use
the special symbol E for this relation. To get it to be a partial congruence, we use special
constraints: first order sentences stating that E is an equivalence relation, and that E
respects relations in the usual way. For the examples in this paper, this distinction between
true identity and congruential identity does not matter. We have therefore chosen to simplify
the presentation by assuming that equality is always interpreted as the identity.

An admissible set of infons is total if it is maximal in the subset ordering on sets of infons.
Intuitively, this is an acceptable truth assignment, or possible world, in the structure M.

Now we can specify a default information structure relative to M and C. Actually, the
work is in specifying the strict (monotonic) part of the system. The defaults can be arbitrary.

3In terms of philosophy of language, we are taking constants to be rigid designators.
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Definition 4.1 Let M be a set, and C a constraint set. A first-order default information
structure relative to M and C is a structure of the form

A(M,C) = (A, Con, ∆, � )

where A is the token set described above. A finite set X of tokens will be in Con if it is
admissible, and X � σ iff for any total admissible set t, if X ⊆ t then σ ∈ t.

Examples. The above definition encodes the constraints C into the � relation of the
information system. For example, consider the constraint obtained by taking C to be the
true formula true. Intuitively, this should be no constraint at all, so our entailment relation
should be the minimal one in which X � σ if and only if σ ∈ X. This is in fact the case.
First notice that because C = true, that a total admissible set t is one which (i) contains
no infon σ = 〈〈σ,m; i〉〉 and the dual infon σ of opposite polarity; and (ii) for any infon σ,
contains either σ or σ. Now let X be a finite set of infons. If X � σ then by properties of
information systems, the dual infon σ �∈ X. By definition of �, for any total admissible set t
of infons, if X ⊆ t then σ ∈ t. If σ is not in X, let t be a total admissible set containing X

and the infon σ of opposite polarity. Then both σ and σ would be in t, which is not
possible for an admissible set.

A more interesting constraint comes from considering the married bachelor problem in
Section 2. Take C to be the single constraint

∀xyz(Spouse(x, y) ∧ Spouse(x, z)→ y = z).

This constraint will force partial models, or situations, to respect the unique spouse property.
It can be checked that our definition of � satisfies Scott’s conditions for a monotonic

entailment relation. (To be absolutely correct, we should only consider those tokens σ such
that {σ} is admissible. But this requirement of Scott systems is not important for our
purposes.)

We are finally ready to give a interpretation to our logic. Select a default structure
A(M,C) as above. Let s be a situation of A(M,C), and let α : V → M . Let x and y range
over situations in A. We define two relations |= and =| between |A| and L by simultaneous
induction:

• (s, α) |= true always;

• (s, α) =| false always;

• (s, α) |= σ(v1, . . . , vn) iff 〈〈σ, α(v1), . . . , α(vn); 1〉〉 ∈ s. (If some of the vi are constants,
we use instead of α(vi) the fixed interpretation of that constant.)

• (s, α) =| σ(v1, . . . , vn) iff 〈〈σ, α(v1), . . . , α(vn); 0〉〉 ∈ s;
• (s, α) |= x = y iff α(x) = α(y);

• (s, α) =| x = y iff α(x) �= α(y);
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• (s, α) |= ϕ ∨ ψ iff (s, α) |= ϕ or (s, α) |= ψ;

• (s, α) =| ϕ ∨ ψ iff (s, α) =| ϕ and (s, α) =| ψ;

• (s, α) |= ϕ ∧ ψ iff (s, α) |= ϕ and (s, α) |= ψ;

• (s, α) =| ϕ ∧ ψ iff (s, α) =| ϕ or (s, α) =| ψ;

• (s, α) |= ¬ϕ iff (s, α) =| ϕ;

• (s, α) =| ¬ϕ iff (s, α) |= ϕ;

• (s, α) |= ∃vϕ iff for some m ∈M , (s, α[v ← m]) |= ϕ;

• (s, α) =| ∃vϕ iff for all m ∈M , (s, α[v ← m]) =| ϕ;

• (s, α) |= ∀vϕ iff for all m ∈M , (s, α[v ← m]) |= ϕ;

• (s, α) =| ∀vϕ iff for some m ∈M , (s, α[v ← m]) =| ϕ.

The relations |= and =| are read “positively satisfies” and “negatively satisfies” respec-
tively. As usual, we write A(M,C) |= ϕ iff for all (s, α) we have (s, α) |= ϕ.

Our semantics is a standard one for Kleene 3-valued logic; see [5] for a complete treatment.
In particular, the defaults play no role; the nonmonotonic effect of the defaults will be
considered in the next section. We need the following result about the semantics.

Lemma 4.1 (Persistence) For a sentence ϕ of L, if s |= ϕ and s ⊆ t, then t |= ϕ.

The proof is straightforward, using a double induction over the structure of formulas.
�

Another useful result, whose proof is standard, is that

Lemma 4.2 Every formula is logically equivalent to one in which negation appears only on
atoms.

�

(By logical equivalence, we mean that two formulas are both positively and negatively sat-
isfied the same way in all structures.)

We will be concerned in the sequel with the existence of minimal models for certain
formulas of our logic. Domain theory helps us to find a sublogic of first-order logic for which
we can always guarantee that a satisfiable formula has a minimal model. Every domain (in
fact algebraic cpo) has a “natural” positive logic associated with it. This logic is given by
the Scott topology of the domain.

Definition 4.2 Let (D,�) be a cpo. A set U ⊆ D is said to be Scott open if for any
directed X ⊂ D, we have

⊔
X ∈ U iff U ∩D �= ∅.
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One checks readily that under this definition of “open”, that the collection of open
subsets of a cpo form a topological space. Such a space must contain ∅ and D, and be
closed under finite intersections and arbitrary unions. Furthermore, we can regard open
sets as being “properties” of domain elements. The definition says that if an element has
a certain property, then we can discover that the property holds by testing a “sequence” of
finite elements which “converges” to the given element. (In general, sequence really means
directed set, and “converges to an element” means that the element is the least upper bound
of the set.) After a finite time, we find that the element does indeed have the property. Such
properties are sometimes called “affirmable” [27].

It is straightforward to prove the following in any algebraic cpo D.

Theorem 4.1 Compactness in the Scott topology

1. For each finite element f ∈ D, the principal compact filter ↑ f = {u | f � u} is open.

2. Every open set U is the union of the principal compact filters generated by the compact
elements of U .

3. Every compact open set X is a finite union of such compact principal filters. (Com-
pact here means the topological usage: every covering of X by open sets has a finite
subcovering.)

�

These results should guide us to a positive sublogic of FOL for which each closed formula
defines an open set in the Scott topology. In fact, we can do the following:

Definition 4.3 The positive fragment of FOL consists of is the least set of formulas in-
cluding positive and negated relational atoms (not including equations or inequations), and
closed under conjunction, negation, and existential quantification.

Lemma 4.3 Every (closed) formula in the positive fragment of FOL defines a Scott open
set in the topology of the domain defined by a given information structure. More precisely,
for fixed ϕ, α, the set {s : (s, α) |= ϕ} is open.

Proof sketch One first notices that basic literals define open sets, and then uses induction
on the structure of the formula. We do not need to consider the case of negation or uni-
versal quantification, so we do not use the =| relation. The inductive step for existential
quantification uses the fact that the open sets in any topology are closed under arbitrary
unions.

�

Notice that in general, not every open set can be written as the set defined by some
positive formula. This is because (at least for a countable vocabulary and structure) there
are uncountably many open sets, but only countably many formulas.
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5 On non-monotonic consequence relations

5.1 Definition and examples

We turn to our notion of “non-monotonic consequence”, and begin with definitions.

Definition 5.1 Let ϕ be a sentence in positive first-order logic. Let A = A(M,C) be a
default information system. An minimal model of ϕ is an ideal element m of A such that

• m |= ϕ;

• m is inclusion-minimal in the set of n with n |= ϕ.

Definition 5.2 Let ϕ be a positive sentence, and β be an arbitrary sentence in first-order
logic. Let A = A(M,C) be a default information system as above.

We say that ϕ |∼A β if for all minimal situations s such that s |= ϕ, we have that

∀t : t is an A-extension of s ⇒ t |= β.

We will see the reasons for these definitions when we study the general properties of
nonmonotonic consequence relations below. We should explain at this point, though, one
reason for requiring formulas on the left of the |∼ sign to be positive. This comes from the
Scott topology, and the fact that open sets define “affirmable” properties. We think of the
formula ϕ as defining a property for which we can have evidence. Such evidence might be
observations of birds, for example. It does not make much sense for “evidence” to be given
in the form of universal statements. On the other hand, leaping to a conclusion β quite often
is an inductive leap: from observations of birds, we conclude that they all fly. So we do not
in general require β to be positive. Incidentally, the same restriction to positive formulas
guarantees the existence of minimal models for satisfiable formulas, a technical condition
needed for our results, and one which does not obtain for partial models of FOL in general.

5.2 Open defaults revisited

Here now are case studies showing that our idea of nonmonotonic consequence is reason-
able. We use our notion of nonmonotonic consequence to resolve Lifschitz’ problem, and the
problem of Baader and Hollunder from Section 2.

Example 1. Consider Lifschitz’ example from Section 2. We translate the default
: ¬P (x)

¬P (x)
as the collection of defaults

: {〈〈P,m; 0〉〉}
{〈〈P,m; 0〉〉} .

Let A = A(M,C) be a default structure as above, with C being the formula t. Then

P (a) |∼A ∀x(P (x)↔ x = a).
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Notice how P (a) is a typical bit of evidence.
Example 2. Consider the case of the married bachelor. We are going to treat this

problem model-theoretically, to see if we can rule out the anomaly. (Refer to Section 2 for
the anomaly caused by the Skolem technique.)

First of all, notice that Skolemization cannot make use of the background information

C = ∀xyz(Spouse(x, y) ∧ Spouse(x, z)→ y = z)

that spouses are unique. (This is true even if we add Skolem axioms for the introduced
constant as part of the base theory.) Our system can make use of the uniqueness constraint
by virtue of the model theory. Let A be a default information structure for the above
language, using constraint C, and with set M of individuals. Let ma be the fixed element
of M interpreting the constant Mary, and tom likewise for Tom. For the defaults we simply
use

: 〈〈woman, m; 0〉〉
〈〈woman, m; 0〉〉

for each m in M . Now suppose that w is a minimal situation satisfying our specific world
description

Abox = AM(Tom) ∧ Spouse(Tom,Mary) ∧Woman(Mary).

Then in particular w satisfies AM(Tom), so either (i) 〈〈bachelor, tom; 1〉〉 ∈ w or (ii) for some
m ∈ M , 〈〈spouse, tom,m; 1〉〉 ∈ w, and 〈〈woman, m; 1〉〉 ∈ w. In case (ii), we know that w
must also respect the background constraint, so m is the only element ofM with the property
of being a spouse of tom. Since w also satisfies spouse(Tom, Mary) we must have m = ma.
It is easy to see that w will have a unique extension x; this is because no defaults themselves
conflict. Since 〈〈woman, ma; 1〉〉 ∈ w, the extension x cannot contain the information that
Mary is not a woman. However, it will contain the tokens stating that all the other elements
of M are non-women, since w is minimal.

Now suppose that (ii) is not the case. Then for any m ∈ M , either 〈〈woman, m; 1〉〉
is not in w, or 〈〈spouse, tom,m; 1〉〉 is not in w. What about the individual ma? Since
〈〈woman, ma; 1〉〉 ∈ w, the first possibility is ruled out, and since 〈〈spouse, tom,ma; 1〉〉 ∈ w,
so is the second. This is a contradiction, and (ii) must be the case. The situation in the
extension is thus that Mary is a woman; everyone else is a non-woman, and Tom is married to
Mary. We cannot infer anything about Tom’s being a bachelor, since we have no constraint
about bachelors having no spouses (to see this, replace “bachelor” with “gardener”.)

In other words, in A we have

Abox |∼A (∀x(x �= Mary → ¬Woman(x))) ∧ Spouse(Tom,Mary) ∧Woman(Mary).

Once again, the formula Abox is an affirmable one.
A general procedure for building a default information system to model open defaults is

the following. Consider the constraints C and the open default

α(x1, . . . , xn) : β(x1, . . . , xn)

γ(x1, . . . , xn)
,
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where the only free variables in any of the formulas are among the xi. We assume the three
formulas are conjunctive; that is, built from atoms or negated atoms using conjunction alone.
(If we are working over finite structures, universal quantification would also be allowed.)
The reason for this assumption is when we build extensions, we always add conjunctive
information to our models by adjoining finite sets of infons. In other words, we regard the
syntactic form of open defaults as a schema for specifying which finite chunks of information
will be added to our models.

Select a set M and a structure A(M,C). Use for defaults the collection

m(α) : m(β)

m(γ)

where each m(ϕ) is a minimal model of ∃xϕ(x), but also such that for some assignment τ
to the free variables of the defaults, (m(α), τ) |= α, (m(β), τ) |= β, and (m(γ), τ) |= γ. The
idea here is that we really want to consider sets of “ground” instances of infons. We can
have not only ground instances where constants are named, but also unnamed elements of a
structure.

5.3 Preferential Consequence

Our objective in this section is to consider the basic Kraus-Lehmann-Magidor axioms for
any “reasonable” notion of preferential entailment. A “core” set of laws is the following:

1. (Reflexivity) ϕ |∼ ϕ.

2. (Left Logical Equivalence) If |= (ϕ↔ ψ), and ϕ |∼ β, then ψ |∼ β.

3. (Right Weakening) If |= (α→ β) and ϕ |∼ α, then ϕ |∼ β.

4. (Cut) If ϕ ∧ α |∼ β, and ϕ |∼ α, then ϕ |∼ β.

5. (Cautious monotony) If ϕ |∼ α and ϕ |∼ β, then ϕ ∧ α |∼ β.

6. (Or) If α |∼ γ and β |∼ γ, then α ∨ β |∼ γ.

Our interpretation of the laws is as follows. Consider a law like (2). We interpret it to
mean: For all structures A, if A |= (ϕ↔ ψ), and ϕ |∼A β, then ψ |∼A β.

The laws 1, 2, 3 follow easily from the definition of |∼. (Note that (1) requires persistence,
Lemma 4.1.) We consider first the Cut law (4), and then the Cautious Monotony law (5).
We treat each law in turn. First we show that in general normal structures, each is false. We
then consider restrictions on the form of the law, and on semantic structures, which make
it true. In each case, we try to give intuitive explanations which in some way show that the
counterexamples are in fact reasonable. Lastly we treat the Or law. Although this law is
true, there is an objection to our definition of |∼ involving non-exclusive disjunctions. We
consider a variant definition of |∼ and a variant of the Or law, called the Cautious Or law,
which is verified by the variant definition of |∼.
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To save typing, the counterexamples are stated using propositional letters instead of first-
order formulas. Recall that ¬ denotes strong negation, on the syntactic side. We use f to
denote the polarity 0 infon corresponding to the negated atom ¬f .

Counterexample to (4) using precondition-free defaults. Let ϕ be w ∨ ¬f , α =
w ∨ f , and β = f . Take for defaults

: f

f
and

: w

w
.

The minimal models of ϕ are {w} and {f}. For ϕ∧α the unique minimal model is {w}.
This has the unique extension {w, f}, so ϕ ∧ α |∼ β. Also, the extensions of the minimal
models of ϕ are {w, f} and {w, f}, respectively. In both of these w holds, so that ϕ |∼ α.
But ϕ does not |∼ β, since we have the extension {w, f}.

The problem here is that by moving to a minimal model of ϕ ∧ α we are forgetting the
information in the models {w, f} and {w, f} which we had when we were figuring out the
conjunction. The second of these models would block the extension {w, f}.

Is this counterexample a realistically valid one? Imagine that w stands for a property
that the typical bird has, like “wingspan less than 6 feet”; and f stands for the property
of flying. Using a new atom b for “bird”, we could reason with the KLM laws as follows:
Suppose that birds normally fly, and birds normally have wingspans less than 6 feet. Using
intuitive reasoning, it seems that from b ∧ (w ∨ ¬f) we could jump to the conclusion b ∧ w.
It also seems reasonable to accept b ∧ w |∼ f . But from b ∧ (w ∨ ¬f) |∼ b ∧ w we get by
weakening b∧ (w ∨¬f) |∼ (b∧w)∨ (b∧ f). Let α be the formula (b∧w)∨ (b∧ f), φ be the
formula b∧ (w∨¬f), and β be f . Then φ∧α is equivalent to b∧w, from which we conclude
f . But from (b∧w)∨ (b∧¬f) it does not seem reasonable to conclude f because of the case
b ∧ ¬f .

Where is the problem in the intuitive reasoning? First, it could be in the acceptance of
b ∧ w |∼ f . By shortening wingspans, we are lessening the probability of flying. But almost
all of the small birds we are aware of do fly4. Second, the problem could be in the acceptance
of the conclusion of having a normal wingspan from the disjunction of that property with
that of not flying. From our experience, at least in AI, non-flying birds are rather large. But
most of them do not have six-foot wingspans, as do eagles, condors, and vultures. Finally, we
could accept flying from the disjunction of non-flying with the property of having a normal
wingspan. This is probably what we should do, since the non-flying birds are very rare
compared to the population with normal wingspans. But from a purely logical perspective,
it seems incorrect.

To explore the situation further, consider removing the disjunction in α.
An example using normal defaults. Let n stand for “nixonian person”, q for

“quaker”, and p for “pacifist”. Let ϕ be n ∨ q, α = q, and β = p. Take for defaults

n : p, q

p, q
and

q : p

p
.

4An exception could be made for babies.
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Assume that {p, p} � ∅.
We have ϕ |∼ α, and ϕ ∧ α |∼ β, for the same reasons as above. But we do not have

ϕ |∼ β because of the minimal model n of ϕ and its extension {n, p, q}, in which the second
default rule is blocked. This shows that we cannot take the cut formula α to be conjunctive.
And in general, it seems that we would not want to make the inference, unless it were a
statement about probabilities. That is, the number of Nixon-like individuals is very small
relative to the number of pacifists and quakers. Once again, the conclusion of pacifism is
warranted on probabilistic grounds. But that situation may not arise in conversation. On
hearing the following:

George is either a Nixonian or a Quaker.

the listener, even knowing the various approximate entailments above, will not jump to the
conclusion that George is a pacifist, because the conversational situation overrides the fact
that George may have been randomly selected from the Nixonians together with the Quakers.
Instead, he or she will assign roughly equal degrees of belief to each of the two disjuncts,
because otherwise the statement would not have been made.

We conjecture that when defaults are precondition-free, the cautious cut rule is valid
with arbitrary ϕ and conjunctive α. What about the other possibility: ϕ is conjunctive, and
α is arbitrary? This works in general.

Theorem 5.1 The cautious cut rule holds in the case that ϕ has a unique minimal model.

Proof Let m be the unique minimal model of ϕ. (In other words, the compact generator
of the open set {n | m � n}.) Let f be an extension of m. We want to show that f |= β,
assuming that ϕ |∼ α and ϕ ∧ α |∼ β. Let n be a minimal model of ϕ ∧ α, such that n � f .
This is possible to find, since f |= ϕ by persistence from m, and f |= α by the hypothesis
ϕ |∼ α. Then

m � n �m � f.

We will be done if we can find a minimal model k of ϕ∧α such that m � k � n�m, because
then m � k � f , so that f is an extension of k, by Theorem 3.1(5). But the set of models
of ϕ ∧ α containing n �m as an element is nonempty and open, and further is a subset of
↑ m. So there is a compact generator k of this set in between m and m � n, as desired.

�

In fact, more is true. Say that an open set is disjoint if for any two distinct compact
generators x and y, we have that x and y are inconsistent. A (positive) formula is disjoint
if the set of its positive models is a disjoint open set.

Theorem 5.2 The cautious cut rule holds when ϕ is disjoint.

Proof As before, let n be a minimal model of ϕ ∧ α, such that n � f . We have

m � n �m � f.
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We will be once again done if we can find a minimal model k of ϕ∧α such that m � k � n�m.
But now let k be a minimal model of ϕ∧ α with k � n�m. Let r be a minimal model of ϕ
with r � k. Then r and m are compatible, so by the disjunctive property, r = m. Therefore
m � k � n �m as before.

�

Counterexample to the Cautious Monotony Law (5). Consider the token set
{p, f, f}. Intuitively we want p to stand for “penguin”, and f for “fly”. Consider the
information system generated by {p} � f and {f, f} � ∅. Choose for a default

: f

f
.

Then we have true |∼ f and true |∼ f ∨ p, but f ∨ p does not |∼ f . This counterexample
seems more cogent than the previous ones, even though a probabilistic analysis as above
validates the law. In other words, from “birds normally fly”, it follows by weakening that
birds normally fly or are penguins. If Cautious Monotony held, then flying should follow
from the disjunction of “bird and fly” with “bird and penguin.” This seems like incorrect
reasoning by cases.

Next, we show that even though Cautious Monotony does not hold in general, it holds
in the PC case when the formula α which is accumulated into the hypothesis is conjunctive.

Theorem 5.3 The Cautious Monotony law holds in the PC case when α has a unique
minimal model.

Proof We work with information systems. Consider a PC default structure A and let
ϕ and α define open sets in the Scott topology. Assume that α is conjunctive , that ϕ |∼ α,
and that ϕ |∼ β. Let e be any extension of a minimal model m(ϕ∧α) of ϕ∧α. We want to

show that e |= β. Let Λ be the collection of elements X, where
: X

X
is a default rule of A.

Then by the definitions and results in Section 3,

e = m(ϕ ∧ α) �⊔{λ ∈ Λ | λ ↑ e}.
Let G(ϕ ∧ α, e) denote the set {λ ∈ Λ | λ ↑ e}.

We may now decompose m(ϕ ∧ α) = m(ϕ) �m(α), where m(ϕ) is some minimal model
of ϕ, and where m(α) is the unique minimal model of α. (This is a straightforward exercise
in partial orders.)

We next claim that
f = m(ϕ) �⊔

G(ϕ ∧ α, e)
is an extension ofm(ϕ). To see this, we apply Theorem 3.5(3). Notice that the set G(ϕ∧α, e)
is compatible with m(ϕ). So the only way that f could not be an extension of m(ϕ) is that
there is some maximal G ⊆ Λ properly including G(ϕ∧α, e), and compatible with m(ϕ), so
that

g = m(ϕ) �⊔
G
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is an extension of m(ϕ). But since ϕ |∼ α by hypothesis, we have g |= α, and so m(α) � g,
because α has a unique minimal model. We therefore have m(ϕ) �m(α) � g, so that G is
compatible with m(ϕ) �m(α) = m(ϕ ∧ α). Therefore, G(ϕ ∧ α, e) would not be a maximal
set of defaults compatible with m(ϕ ∧ α), and hence e would not have been an extension of
m(ϕ ∧ α). Thus, f is an extension of m(ϕ).

The result now follows, as f |= β by hypothesis, and f � e, so that e |= β by persistence.
This completes the proof.

�

This result does not extend to normal default structures: the nonmonotonic conse-
quence relation induced by a normal default structure does not in general have the cautious
monotony property, even when all formulas are conjunctive. Consider the following normal
default structure (A,�,∆), where

A = {a, b, c},
∆ = { : b

b
,
b : a

a
,
a : c

c
},

{a, b, c} � ∅.
There is a unique extension for ∅: {a, b}. There are, however, two extensions for {a}:

{a, b}, {a, c}.
We have, therefore, true |∼ a, true |∼ b, but a �|∼ b.

�

Finally, we consider reasoning by cases.

Theorem 5.4 The Or law

α |∼ γ and β |∼ γ imply α ∨ β |∼ γ.

holds in general.

Proof Obvious.
�

There is a possible objection at this point to our definition of |∼. The conjunction of two
formulas α and β is a strengthening of both of them. If we are reasoning by cases, then the
“both” part of “either α or β or both” may defeat the conclusions following nonmonotonically
from α and also the ones following from β. For example, take a default structure with a
trivial � relation over the token set {a, b}. For defaults, take

a : b

b
,
b : a

a
.

Then we have a |∼ ¬a ∨ ¬b and b |∼ ¬a ∨ ¬b. By the Or law, we have a ∨ b |∼ ¬a ∨ ¬b.
However, consider the least model of a∧b, which is {a, b}. None of the defaults are applicable
in this situation. So a ∧ b defeats the previous conclusions ¬a and ¬b.

This problem suggests that we might want to use a more conservative notion of |∼.
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Definition 5.3 Let ϕ be a sentence in positive first-order logic. Let A = A(M,C) be a
default information system. An almost-minimal model of ϕ is an ideal element m of A
such that

• m |= ϕ;

• m is the least upper bound of a finite collection of n’s inclusion-minimal in the set
{n | n |= ϕ}.

Then we say that (in a structure A) φ |∼a
A ψ iff for any almost-minimal model m of φ,

all default extensions of m satisfy ψ. (The superscript a stands for “almost”.)
One can check that the previous results still hold under the |∼a interpretation. Further,

it is straightforward to show the following.

Theorem 5.5 The Cautious Or law

α |∼a γ and β |∼a γ and (α ∧ β) |∼a γ imply (α ∨ β) |∼a γ

holds in the “almost-minimal” sense |∼a.
�

Notice that default logic itself does not allow any case analysis. Our theory, even though
we use a conservative notion of “cases”, does allow this notion.

6 A comparison with other approaches

In this section we discuss probabilistic and cumulative-model approaches to the KLM laws,
in an attempt to understand why our semantics does not satisfy them.

Probabilistic analyses of defaults, such as those in Adams [1], and subsequently Pearl
[20], among many others, have pointed to the laws (1-6) as “core laws” which should hold
in any reasonable calculus of approximate reasoning.

Consider the first counterexample to the Cut law. Simple numerical experiments confirm
that on a probabilistic basis, acceptance of the conclusion of flying is warranted even when not
flying is one of the cases in the premise. Why, then, does this conclusion seem unintuitive?
The answer lies, we think, in the use of default reasoning in natural language. As Pearl
points out:

In the logical tradition, defaults are interpreted as conversational conventions,
rather than as descriptions of empirical reality.. The purpose.. is not to convey
information about the world, but merely to guarantee that, in subsequent con-
versations, conclusions drawn by the informed will match those intended by the
informer [20, Section 1].
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We agree with this analysis, but we also think that from the use of default conditionals in
conversation, listeners may quite possibly create multiple world models in which different
models get assigned rough and sometimes inaccurate degrees of belief. This would be the
case above, where the possibility of non-flying birds gets assigned more weight than would be
warranted empirically. It would also account for the Nixon-Quaker example, as we mentioned
above.

Adams’ ε-semantics verifies the laws, but involves interpreting defaults in a limit sense:
φ |∼ ψ is interpreted as saying that the conditional probability of the statement ψ given φ
can be made as close to 1 as desired, relative to a notion of admissible probability distribu-
tions, allowed by prespecified default constraints. On the other hand, a more simple-minded
interpretation of the entailment φ |∼ ψ – that the conditional probability of ψ given φ is
greater than or equal to a fixed constant – does not verify them. So at least there is some
room for arguing that the laws need not be universal.

We now turn to a somewhat detailed comparison of our information-based semantics with
the cumulative and preferential model semantics of Kraus, Lehmann, and Magidor.

This is especially interesting since cumulative models give a model-theoretic represen-
tation of cumulative consequence relations – those relations satisfying all but the Or law
(6).

We recall the basic semantic framework of KLM. Their logical language is that of propo-
sitional logic. Formulas are defined as usual with the standard connectives. (For the purely
cumulative models, this assumption is not necessary.) Then, one considers a set U of worlds.
This may be taken as a subset of the set of all truth assignments to the formulas of propo-
sitional logic. Satisfaction of a formula φ by a world u ∈ U is defined in the standard way.
(There is a difference here immediately with our partial model semantics, but perhaps not
the crucial distinction.)

Definition 6.1 (Cumulative Model Theory)

• A cumulative model is a triple W = 〈S, l,≺〉 where S is a set of states, l : S → 2U

is an assignment of worlds to each state, and ≺ is a binary relation on S. This relation
must satisfy a smoothness condition to be given below.

• A state s is said to satisfy a formula φ iff for every u ∈ l(s), u |= φ. We write s |≡ φ.
By φ̂ we mean {s | s |≡ φ}.
• The relation ≺ is smooth iff for every formula φ, every element s in φ̂ is either

minimal itself in φ̂, or there is a minimal element t of φ̂ with t ≺ s. (We say that t is
minimal if there is no u in φ̂ with u ≺ t.)

States in S are unspecified, but can be thought of as mental states of an agent. The
worlds assigned by l to a state are those worlds which an agent considers possible in the
state. The relation ≺ between states is the relation which describes preference. If s ≺ t,
then we intend that s is a world which is less exceptional than t. In the standard example,
it would be a state in which Tweety is a bird and flies, as opposed to one where Tweety is a
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bird and does not fly. The smoothness condition looks at first like a technical condition to
ensure minimal models of formulas or perhaps theories. However, as KLM point out, it is
crucial to verify cautious monotony.

Definition 6.2 Given a cumulative model W , the consequence relation |∼W determined by
W is defined by: φ |∼W ψ iff for any s minimal in φ̂, we have s |≡ ψ.

KLM show that a cumulative model always has a consequence relation satisfying Cut
and Cautious Monotony (and conversely.)

The definition of cumulative model is quite reminiscent of our default consequence re-
lation, and intuitively is trying to say the same thing. For us, a state is just a situation,
and the worlds we consider possible in a situation are the extensions of that situation. Our
relation of ≺ is just strict subset inclusion. This means that for us, a preferred state for a
formula φ is one which affirms φ, but otherwise has no information about any other proper-
ties. Our nonmonotonic consequence relation does not select situations minimal in the set
of situations all of whose extensions satisfy φ, but ones which minimally satisfy φ directly.
In other words, we could have defined our nonmonotonic consequence relation as follows.

Definition 6.3 Given a default information structure A = (A(M,C), the “cumulative”
consequence relation |∼c

A determined by A is defined by the condition φ |∼c
A ψ iff: for any s

minimal in the set
{t | (∀t′)(t δA t′ ⇒ t′ |= φ)},

we have that all extensions of s satisfy ψ.

It turns out that in the first order case, the strict subset inclusion relation is not always
smooth. This is related to the fact that the set φ̂ is not always Scott open even though φ
is positive. On the other hand, in finite structures we always get smoothness. So in these
cases, we can use default models to get a consequence relation satisfying Cut and Cautious
Monotony. Why not then use such a definition? One reason is that we want to use a
definition that sanctions reasoning by cases, which the revised definition does not allow. In
other words, there is no natural “preferential model”, a cumulative model in which the label
of a state is a single world.

A more intuitive reason not to use the revised definition is that we think a minimal
normal state all of whose extensions satisfy a formula ought itself to satisfy the formula. To
see this, recall the counterexample to Cautious Monotony above. The information system is
generated by {p} � f and {f, f} � ∅, and for defaults we take

: f

f
.

As above, we have true |∼ f and true |∼ f ∨ p, but f ∨ p does not |∼ f .
Notice that the empty situation is a minimal cumulative “normal world” for p∨f , because

all of its extensions satisfy f , but of course the empty situation is not a model of p ∨ f .
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Summing up, we might introduce some modal notation to make clear the distinction
between our notion and that of KLM. For a formula φ, and structure A, denote by Bφ the set
of situations all of whose extensions positively satisfy φ, and by Cφ the set of situations which
directly satisfy φ positively. (C stands for “confirm”.) Then, our definition of nonmonotonic
entailment is φ |∼A ψ iff

Min(Cφ) ⊆ Bψ,

while the KLM-style “cumulative” definition would read

Min(Bφ) ⊆ Bψ,

where Min applied to a collection of situations picks out the collection of subset-minimal
elements. So the first definition reads that minimal confirming situations for φ support belief
in ψ, while the second reads that minimal situations supporting belief in φ also support belief
in ψ. This shows that our relation is fairly conservative, and it brings out the reliance in our
definition on having evidence. We hope that even though we have chosen a strict notion of
nonmonotonic entailment, that our positive results gain some added force. That is, we can
reason by cases, and we can cut formulas as long as everything in a disjunction is disjoint.

As a final comparison to other work in the literature, our counterexamples to the KLM
laws are similar to those of Makinson [19], showing that default logic is not cumulative.
There are in fact other options for reclaiming cautious monotony. For example, we could
define an order-theoretic version of Brewka’s cumulative default logic in [6], which was a
response to Makinson’s examples. Another possibility for the normal default case would be
to use a different kind of “extension.” In [23], we have introduced such an operator, which
has cumulativity “built in.” It is called a dilation. We leave the investigation of the KLM
laws under this fixed-point operator to another paper.

7 Conclusion

In assessing the novelty of our approach in general, one could claim that generalizing Reiter’s
ideas to Scott domains is relatively straightforward. We would only argue that it is reasonably
difficult to see this given just Reiter’s logic as an example. It seems to us that in comparing
the major nonmonotonic formalisms, Reiter’s notion of default generalizes most easily to an
order-theoretic notion. Circumscription is perhaps another one which could be generalized,
because looking at minimal models is another order-theoretic idea. It was, however, less
clear to us how to do this generalization than it was in the case of defaults.

Our results on open defaults do not completely satisfy us. Kaminski, in [12], has given
a full study of the problems with these systems. We need to understand, perhaps, how
an open default of the types studied by Kaminski can interpreted model-theoretically in a
default system. For the case of conjunctive defaults we hope to have made some contribution,
as an application of our general methodology.

Our definition of nonmonotonic entailment seems to be justified on the grounds of belief
structures based on using extensions as accessibility relations. Given a situation, we would
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be justified in believing a formula if it held in all extensions of that situation. Reiter’s notion
of “default consequence”, for example, is one instance of such a notion, where “situation”
means a theory W , and extensions are the usual default extensions in default logic. In
this case, notice that “satisfaction” is just given by membership. A formula is a default
consequence of W if it is a member of all extensions of W . Notice also that in the first-order
case, we get results similar to those provided by circumscription, which by Shoham’s results
can be seen to be essentially a model-theoretic notion. But once again our models generalize
to many more than first-order ones.

The laws we obtain for nonmonotonic entailment are more conservative than the KLM
laws. One might see this as evidence that our theory is incorrect. We have indicated that
there are other studies (for example [7]) in which various of the laws are not true. We
hope that our counterexamples are realistic enough to at least suggest more careful study
of the notion. We see the failure of the laws as pointing out in more detail the differences
between defaults as prescriptive devices, as in default logic, and as descriptive ones, as in
the probabilistic work. This distinction was very ably pointed out by Pearl in our quotation
above.

The potential uses of a domain-theoretic approach to default reasoning still are largely
unexplored. Our methodology in this paper led us to ask if there were a domain-theoretic
model theory for first-order logic, leading to the information systems described in Section 3.
This partial model theory seems to be new, independently of nonmonotonic considerations.
The generalization of nonmonotonic consequence relations to the Scott topology is also new.
All of our positive results on these relations hold in general Scott domains. The first-order
systems are just a special case.

Although we make use of one domain-theoretic notion, other methods from domain theory
remain to be considered. We would like, for example, to have default versions of function
space constructions, and other type-forming operations. Exactly how to go about this is still
unclear at present.

We can, however, consider specializing first-order systems. This could provide a tool for
adding defaults to terminological logic systems, another project currently under investiga-
tion. Even the special case of feature logic [13] is interesting.

Finally, one of the most exciting prospects for our approach is to combine reasoning about
programs with default reasoning, using the common framework of domain theory, which at
the very least has shown itself as a superb tool for understanding the former. We would like
to provide some evidence that reasoning about actions in AI can be profitably attacked with
a common semantic framework.
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