Research Report AI-1994-08

Attunement to Constraints in
Nonmonotonic Reasoning

William C. Rounds
Artificial Intelligence Laboratory
University of Michigan

Guo-Qiang Zhang
Department of Computer Science
University of Georgia



Attunement to Constraints in
Nonmonotonic Reasoning*

William C. Rounds
Artificial Intelligence Laboratory
University of Michigan
Ann Arbor, MI 48109 USA
and
Guo-Qiang Zhang
Department of Computer Science
University of Georgia
Athens, Georgia 30602

December 7, 1994

1 Introduction

This paper began as an attempt to use domain theory to throw some light
on some of the semantic problems in the area of non-monotonic logic within
artificial intelligence. After having thought about some of the issues in-
volved, though, it seemed to us that the examples and methods we use
might be of interest in a broader setting. We are offering the results of our
investigations in that spirit, hoping that this will be a start on the problem
of putting the work in standard Al approaches to non-monotonicity to-
gether with current work on information flow (Seligman and J.Barwise 1993.)

We are interested in the subject of default or “normal” inferencing. On
the surface of things, this can be exemplified within propositional logic
using a non-monotonic consequence relation « |~ ( between sentences «
and . The typical gloss of this is “birds normally fly.” So, in terms of
(one version of) situation theory, one would take o and 3 as types, as in
the “smoke means fire” paradigm of Devlin (Devlin 1991.) In later work,
Barwise (Barwise 1989) suggests that this relation, as a relation between
types, would be an indicating relation, to be accompanied by a correspond-
ing signaling relation s; — sg, where s1 is a “site” supporting «, and so is
a site supporting 3. In later

Imagine for a moment that there are no exceptions to any rules. We
can then use a “strict” indicating relation o =  to mean that any object
of type « is also of type 3. (The pair (a, () is called a constraint.) In this
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case, we can take the signaling relation to be the identity on the objects
(sites). Then we can have a flow of information about such objects: we
can associate the new information that an object s is of type 8 given that
it was of type . So far this is pretty unexceptional, but the interesting
point is that even when there are exceptions, we still use the identity sig-
naling relation to gain information about objects. That is, if we know that
birds normally fly, and only that Tweety is a bird, then we infer (although
possibly incorrectly) that Tweety can fly. The point of default reasoning is
that we use such information virtually all the time.

This scenario has of course been extensively studied in artificial in-
telligence. Barwise has also given a situation-theoretic treatment of it in
(Barwise 1989, chapter 5), where the additional idea of background type was
introduced. The idea there was that a background type N might stand for
“the type of birds which are not like penguins, emus, and ostriches”, so
that conditional on the background type NN, the type “bird” would cor-
rectly entail the type “fly”. This idea was subsequently refined, both by
Barwise and by Seligman (Seligman and J.Barwise 1993), into the idea of
an information channel. In channel theory, pairs s1 — s2 are classified by
some channel as being of type a = 3 or not. If this classification holds, and
sl is in fact of type «, then we can infer that s2 is of type 3. Exceptions can
occur here: when, for example, the pair s1 — s2 fails to be classified either
positively or negatively. Cavedon (Cavedon 1994) has given a semantics of
conditional logic and a semantics for defaults using these ideas directly.

In this paper, we would like to present another information-theoretic
proposal to model the above scenario. It also involves the notion of back-
ground, but in a somewhat different way. We think of a background con-
straint as a strict constraint relative to which we add non-strict default
constraints of the kind mentioned above. The kind of background con-
straint we have in mind is the strict constraint that penguins are birds,
and do not fly.

We work in first-order logic, and we model background constraints as
conditional first-order sentences. So “penguins are birds” is just given
as the usual universally quantified sentence (Horn sentence) expressing the
constraint. We use background constraints to govern partial models of first-
order logic. These models are constructed using systems of default rules, as
in the default logic of Reiter (Reiter 1980), but where Reiter’s rules build
logical theories, our rules build models. Our approach takes advantage of
domain-theoretic notions. A system of default rules is a straightforward
generalization of Scott’s notion of information system (Scott 1982.) We
think of these default systems as “programs” which are created by a rea-
soning agent to satisfy default constraints.

We show how to treat the standard penguin example in our system, and
we give what we hope are some other amusing case studies. The interesting
observation here, we feel, is that we can show a specific example of what
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Devlin calls “attunement” to background constraints. The idea is that a
reasoner will create default systems in response to experience, in an effort
to make default constraints into hard ones. But these systems of defaults
can be giving a lot of non-information and even false information in a
probabilistic sense. They, and the default constraints themselves, should
be undergoing revision. We illustrate this by considering an anomaly of
Poole (Poole 1989), related to the so-called “lottery paradox” (Jr. 1961);
and we consider a more complex case involving the well-known (folk?)
“Nixon Diamond.”

To this end, we introduce a notion both of non-monotonic consequence
I which can be used to state default constraints, and, in the finite case, a
probabilistic notion of “degree of belief” useful in analyzing the examples.

2 Relations to standard AI approaches

Etherington (Etherington 1988) gave the first model-theoretic semantics to
Reiter’s default logic. This was a system based on sets of first-order mod-
els. Marek, Nerode, and Remmel (Marek et al. 1990), gave a semantics
for nonmonotonic rule systems. They translated Reiter’s default rules into
finitary formulas of a certain special infinitary logic. Extensions — the cen-
tral construct of Reiter’s logic — are viewed as models for certain formulas
encoding the existence of default derivations.

Our approach has certain commonalities with the Nerode, Marek, and
Remmel theory, in that we view extensions model-theoretically. However,
we use extensions as models for ordinary first-order logic, not the special
logic used by Marek, Nerode and Remmel. It will also be clear that first-
order logic is not the only possible logic for which default models could
serve as a semantic space. But we concentrate on the first-order case, since
that involves the use of constraints.

Our treatment also has the advantage that one can analyze default rea-
soning situations by working directly with models, as one does all the time
in ordinary mathematical reasoning. This contrasts with the approaches of
MNR and Etherington, where in the first case, the logic describes a proof
theory, and in the second, where one works with sets of first order mod-
els as models for default logic. We hold the thesis that Reiter’s default
systems should be regarded, not as proof rules, but as algorithms for the
direct construction of partial models for some appropriate logic. This is a
simple and radical reconstruction of default reasoning. To give it a proper
explication, though, we use domain-theoretic tools — information systems
and Scott domains, in particular, since in our view default reasoning is
about what happens when information necessary to resolve a question is
lacking.

As we have stated, we want our models to be governed by constraints,
which in our setting are thought of as laws which govern the behavior of
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partial models, but which are in the background. We encode a constraint
theory into the monotonic forcing relation F of a Scott information sys-
tem appropriate for a first-order logic semantics. How to accomplish this
encoding was not absolutely clear. One possibility is to use a generaliza-
tion of information systems themselves, due to Saraswat and Panangaden
(Saraswat et al. 1991), to the first-order case. We have determined, how-
ever, that such a move is unneccessary. We represent constraint theories
as a special case of ordinary monotonic information systems.

The next problem is how to add a non-monotonic component to infor-
mation systems. This we have done by simply adding default forcing rules
to Scott’s systems.

A final problem is how to use the domains we generate as models for
first-order logic itself, and specifically, how to interpret negation. We
have chosen a restricted, positive version of first-order logic, which only
allows negation on atomic formulas. Then we introduce a notion |~ of
non-monotonic consequence between sentences of first-order logic, as in
Kraus, Lehmann, and Magidor (Kraus et al. 1990.) We say that in a de-
fault model structure, one sentence non-monotonically entails a second if
the second holds in all extensions of “small” partial models of the first.
Here “smallness” is interpreted with respect to the natural partial order
associated with a Scott domain.

We then turn to the construction of degrees of belief using finite models.
Finite default models are of course a special case of our theory. We can
generalize the usual finite model theory to partial models, and can use
default rules to assign probabilities to statements in FOL, representing an
agent’s degree of belief in certain situations obtaining. This gives a way
of thinking about the usual “birds normally fly” as a pseudo-probabilistic
statement. We illustrate this method in the resolution of an anomaly with
standard default reasoning, due to Poole (Poole 1989.)

The paper is organized as follows. In section 3 we cover the basics
of domain theory and information systems, introduce our non-monotonic
generalization, and state a representation theorem for default domains. In
Section 4 we show how to interpret first-order positive logic using default
models. This is where constraints play a crucial role. Then in Section 5 we
introduce our notion of conditional degree of belief, and treat our examples.

3 Default Domain Theory

3.1 Information Systems

We review Scott’s representation of domains using information systems,
which can be thought of as general concrete monotonic “rule systems” for
building Scott domains.



Definition 1 An information system is a structure A = (A4, Con, F )
where

e A is a countable set of tokens,

e Con C Fin (A), the consistent sets,

e HC Con x A, the entailment relation,

which satisfy

1. XCY &Y € Con= X € Con,
2.a€ A= {a} € Con,

3. XFa& X eCon=XU{a} e Con,
4.ae X & X €eCon= XFa,

5. (VbeY. XFb&YlFce)=XFe

Example: Approximate real numbers. For tokens, take the set A
of pairs of rationals (g, r), with ¢ < r.

The idea is that a pair of rationals stands for the “proposition” that a
yet to be determined real number is in the interval [g, ] whose endpoints
are given by the pair.

Define a finite set X of “intervals” to be in in Con if X is empty, or
if the intersection of the “intervals” in X is nonempty. Then say that
a set X F (g,r) iff the intersection of all “intervals” in X is contained
in the interval [¢,7]. Note that there is only atomic structure to these
propositions. We cannot negate them or disjoin them.

The representation of Scott domains uses the auxiliary construct of ideal
elements.

Definition 2 An (ideal) element of an information system A is a set x of
tokens which is

1. consistent: X C z = X € Con,
2. closed under entailment: X Cx & X Fa=a € x.

The collection of ideal elements of A is written |A.

Example. The ideal elements in our approximate real system are in
1-1 correspondence with the collection of closed real intervals [z,y] with
x < y. Although the collection of ideal elements is partially ordered by
inclusion, the domain being described — intervals of reals — is partially
ordered by reverse interval inclusion. The total or maximal elements in
the domain correspond to “perfect” reals [x,z]. The bottom element is a
special interval (—o0, 00).

It can be easily checked that for any information system, the collection
of ideal elements ordered by set inclusion forms a Scott domain. Conversely,
every Scott domain is isomorphic to a domain of such ideal elements. These
results are basic in domain theory, and have been generalized to other
classes of complete partial orders by Zhang (Zhang 1991) and others.
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3.2 Default Information Systems

We generalize the theory of information systems by simply adding a default
component. We should mention at this point that we limit ourselves to the
so-called normal default structures. The reason for this is not that we
cannot define general default rules, but rather that there are problems
with the existence of extensions in the full case that we want to avoid.

Definition 3 A normal default information structure is a tuple
A= (A, Con,A,})

where (A, Con,F) is an information system, A is a set of pairs (X,Y) of
X:Y

consistent finite subsets of A, each element of which is written as
In our application, tokens will be “tuples” or infons of the form
(o, ma,...,mpu;a),

where o is a relation name, the m; are elements of a structure, and 4 is
a “polarity” — either 0 or 1. The rules in A should therefore be read as
follows. If the set of tuples X is in our current database, and if adding Y
would not violate any database constraints, then add Y.

In default logic, the main concept is the idea of an extension. We define
extensions in default model theory using Reiter’s conditions, but extensions
are now (partial) models. The following definition is just a reformulation, in
information-theoretic terms, of Reiter’s own notion of extension in default
logic.

Definition 4 Let A = (4, A,F) be a default information structure, and
x a member of |[A|. For any subset S, define ®(z,S5) to be the union

Uico, ¢(w, S, 1), where

(b(ma Sa O) =,
o(r.S.i+1) = 3 SH Uy | X

y is an extension of z if ®(x,y) = y. In this case we also write xd4y, with
the subscript omitted from time to time.

EA& X Cé(x,8,i) &Y US € Conl.

Example: Default approximate reals. Use the information system
described above. We might like to say that “by default, a real number is
either between 0 and 1, or is the number 7”. We could express this by

letting A consist of the rules %, where Y ranges over singleton sets of
rational pairs {(p, ¢)} such that p <0 and g > 1, together with those pairs
{(r,s)} such that » < m and s > w. Then, in the ideal domain, the only
extension of [—1, 2] would be [0, 1]; the interval [—2,0.5] would have [0, 0.5]
as an extension, and there would be 2 extensions of [—2, 4], namely [0, 1]
and [, 7].



In the full paper we show that all of this material can be stated in order-
theoretic terms, without the need for information systems. This will make
it possible to see the essential formula defining extensions, and will give a
hint as to why we believe the order-theoretic approach is an interesting one
to take.

4 Constraint default structures for first-order logic

Assume, for purposes of this paper, that we are given a signature for first-
order logic without equality, and with no function symbols other than con-
stants. We will interpret first order logic using a nonstandard class of
models. Our structures will be default information systems based on a
particular set of individuals M. We first have to assume some constraints
on any relations which are going to be holding in such sets M. These
constraints will be used to generate the monotonic forcing relation + in
the default structure. (The defaults themselves can be arbitrary, as long
as they are normal.) We can use sets C of arbitrary closed formulas of
first-order logic to state background constraints; in fact, we can use any
language for which first-order structures are appropriate models.

To interpret formulas, we first of all choose some set M of individuals.
We do not fix relations on M as in the standard first-order case, but we do
choose particular individuals to interpret the constants'. Now, tokens will
be infons of the form

o={(R,m,... ,mn;i)

where R is a relation name, m; € M, and ¢ € {0,1}. (This last item is
called the polarity of the token.) We say that a set s of these tokens is
admissible if (i) it does not contain any tokens conflicting in polarity, and
(ii) it matches a model of C' in the usual first-order sense. That is, there is
a structure
M= (M,(R1,...Ry))

where the R; are relations on M of the appropriate arities, such that M is
a model of C, and such that

(Rj,mi,...,mn;1)) € s = Rj(mq,...,my,) is true in M.
Similarly,
(Rj,m1,...,mpn;0)) € s = R;(ma,...,my,) is false.

An admissible set of infons is total if it is maximal in the subset order-
ing on sets of infons. A total set is isomorphic to an ordinary first-order
structure M.

Now we can specify a default information structure relative to M and
C. Actually, the work is in specifying the strict (monotonic) part of the
system. The defaults can be arbitrary normal ones.

1n terms of philosophy of language, we are taking constants to be rigid designators.
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Definition 5 Let M be a set, and C a constraint set. A first-order default
information structure relative to M and C is a structure of the form

A(M,C) = (A, Con, A, )

where A is the token set described above. A finite set X of tokens will be
in Con if it is admissible, and X F o iff for any total admissible set ¢, if
X Cttheno et.

Examples. The above definition encodes the constraints C' into the
relation of the information system. For example, consider the constraint
obtained by taking C' to be the true formula t. Intuitively, this should be
no constraint at all, so our entailment relation should be the minimal one
in which X F ¢ if and only if 0 € X. This is in fact the case. First notice
that because C' = t, that a total admissible set ¢ is one which (i) contains
no infon o = {{o,m;4) and the dual infon T of opposite polarity; and (ii)
for any infon o, contains either o or @. Now let X be a finite set of infons.
If X I o then by properties of information systems, the dual infon 7 ¢ X.
By definition of I, for any total admissible set ¢ of infons, if X C ¢ then
o€t If oisnotin X, let t be a total admissible set containing X and
the infon @ of opposite polarity. Then both ¢ and & would be in ¢, which
is not possible for an admissible set.

Notice that our general definition is easily modified to particular classes
of interpretations. For example, our constraints may be stated for just one
intended model, say the real numbers with addition and multiplication.
In that case, we choose our sets M to be allowable by the particular in-
terpretation class, and we change the definition of admissibility so that
first-order structures are chosen from our particular class as well. Techni-
cally, we should restrict M to be countable, so that our Scott domain is
in fact w-algebraic. In fact, though, we will mostly be interested in finite
default models for first-order logic.

4.1 Syntax and Semantics

For lack of space, we omit the official details of our three-valued semantics;
but they are standard, given a knowledge of the strong Kleene truth tables.

4.2 Nonmonotonic consequence

Our semantics can now be used to define a relation of nonmonotonic en-
tailment, written |~, between sentences of our (positive) first-order logic.
Understanding this notion is a step towards understanding the probabilistic
measure introduced in the next subsection.

Intuitively, when we say that ¢ nonmonotonically entails 1, we mean
that having only the information ¢, we can “leap to the conclusion” 1.
The usual example is that, knowing only that Tweety is a bird, we can
leap to the conclusion that Tweety flies, even though penguins do not fly.
A great deal of effort in the Al community has gone into giving a proper
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interpretation to the assertion ¢ |~ 1. We use (finite) default models and
extensions to interpret it.

The notion of “only knowing” ¢ in ¢ |~ ¥ Levesque 1990, given a
default information structure, is captured by interpreting the antecedent
@ in a certain small class of situations for the structure. There are at
least two possibilities for this class. One natural one is to use all set-
theoretically minimal situations supporting . The second is to interpret
@ in the supremum closure of these minimal models. We choose the second
in this paper, because it seems better motivated from the probabilistic
standpoint to be given in the next subsection.

We therefore make the following definitions.

Definition 6 Let A(M,C) be a default information structure, and ¢ a
sentence of our logic. Let s,t range over situations.

o MM(yp) is the set {s| s is minimal such that s = ¢};

o U(p) is the supremum closure of M M(p): the collection of situ-
ations obtained by taking consistent least upper bounds of arbitrary
subcollections of MM (). If s € U(yp) we will say that s is a minimal-
closure model of ¢.

Notice that since our logic is positive, every situation in U(y) will support
®.

Given these concepts, we can define nonmonotonic consequence (in a
structure) as follows.

Definition 7 Let ¢ and 8 be sentences in first-order logic. Let A =
A(M,C) be a finite normal default information system as above. We say
that ¢ |4 3 if for all minimal-closure models s € U(yp),

Vt: tis an A-extension of s =t |= .
Example. We give the standard bird-penguin example. Assume that

our language contains two predicates Bird and Penguin, and that Tweety
is a constant. Let C' be the constraint

(Vz)(Penguin(x) — Bird(x) A ~Fly(z)).
Consider a structure A(M, C). Form the defaults
bird, m; 1) = (fly, ms 1)
(fly,m; 1))

for each m in M. These defaults express the rule that birds normally fly.
We then have

MM (Bird(Tweety)) = U(Bird(Tweety)) = {{{(Bird, tw; 1)) } }

where tw is the element of M interpreting Tweety.
The only extension of {{(Bird, tw,;1)} is {{bird, tw; 1), {( fly, tw; 1) }.
Therefore

Bird(Tweety) ~ Fly(Tweety).
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We do not have Penguin(Tweety) p Fly(Tweety), because of the con-
straint C.

5 Probabilities, Constraints, and Attunement

Where do the default structures (in particular the default systems above)
come from? We suggest that they could come from default constraints.
Consider a (syntactic) construct of the form ¢(z) p ¥ (x) where z is a
free variable (perhaps parameter). Then, given a structure A = A(M, C)
an admissible default system would be one where the set of defaults A is
such that with respect to all anchorings « of the free variables, we have that
(¢ 4 ¥)[a]. By this last notation, we mean just to write out the definition
of |~ again, but with respect to the anchoring o. A more stringent notion
of consequence is now possible, as we can insist that in a structure, one
formula entails another with respect to any admissible default system.

In fact, though, the usual default sets seem to come about in other
ways. The example of the Nixon Diamond will serve to illustrate this
point. In this example, Quakers are by default pacifists, and Republicans
by default warmongers, and Nixon is strictly a Quaker and a Republican.
The default sets satisfying the two default constraints are usually lumped
together, with the result that one extension has Nixon as a warmonger, and
another has him as a pacifist. No one so far has tried to separate default
sets, constructing extensions in stages, to our knowledge.

The fact that default sets can be arbitrary has other amusing rami-
fications. We can use defaults to generate degrees of belief or subjective
probabilities of various logical statements. By “subjective probability” we
mean an analogue of the usual probability, a number that would be assigned
to a statement by a particular agent or subject, given a default system and
some basic constraints on the world. Let us illustrate with an example of
Poole (Poole 1989.)

5.1 Poole’s anomaly

Assume that there are exactly three mutually exclusive types of birds:
penguins, hummingbirds, and sandpipers. It is known that penguins don’t
fly, that hummingbirds are not big, and that sandpipers don’t nest in trees.
Now suppose we want to assert that the typical bird flies. Since we only
speak of birds, we can do this with the precondition-free “open default
constraint”
true |~ fly(x).

We would also like to say that the typical bird is (fairly) big, and that it
nests in a tree. Similar defaults are constructed to express these beliefs.

The “ paradox” is that it is impossible now to believe that Tweety,
the typical bird, flies. To see why, let us formalize the problem more fully
in our first-order language. Let C; be the obvious first-order sentence
asserting that every individual is one of the three types of birds, and that
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no individual is of more than one type. Let Cy be the conjunction of three
sentences expressing abnormalities. One of these is, for example,

Va(Penguin(z) — —fly(z)).
Let the background constraint C' be Cq A Cs.
The defaults must be given in the semantics. Let M be a finite set,

and consider the first-order default structure A with the admissible set of
precondition-free defaults

(fly,mi1) 2 (big,my1)  : (tree,m; 1))

(fy,m; 1) (big,m;1) " (tree,m;1))
We need only precondition-free defaults, because we only speak about birds.
Further, we need no infons mentioning penguins, or any of the other species.
The constraints can still operate.

We assert that if M has n elements, then there are 3™ extensions of
the empty set (which is in fact the least model of t). This is because any
extension will include, for each bird m € M, exactly two out of the three
infons ((fly, m; 1)), (big, m; 1)), (tree,m; 1)). The extension cannot contain
all three infons, because the constraints rule that out. So each of n birds
has three choices, leading to 3™ extensions.

One such extension is

{{big,m;1)) : m € M} U {{tree,m;1)) : m € M}

which omits any infons of the form {(fly, m; 1)). This extension is one where
no birds fly, where all birds are penguin-like. So now if Tweety is a constant
of our language, then the formula Fly(Tweety) is not a nonmonotonic con-
sequence of the “true” formula true, whose minimal model is the empty
set. Further, if we move to the situation of seventeen bird types, each with
its own distinguishing feature, we still have the case that Tweety cannot
be believed to be flying. Poole suggests that this raises a problem for most
default reasoning systems.

5.2 A pseudo-probabilistic solution

We now contend that the problem is not so severe. Notice that it is only in
37~ ! extensions that Tweety does not fly. This is because in an extension
where Tweety does not fly, the constraints force the infons involving Tweety
to assert that he is big and lives in a tree. Tweety thus only has one non-
flying choice. The other n—1 birds have the same three choices as before. It
seems therefore truthful to say that with probability (3" —37~1)/3" = 2/3,
Tweety believably does fly. Moreover, imagine a scenario with seventeen
mutually exclusive bird types, the same kinds of exceptions for each type,
and defaults for all of the types. Then we would get that Tweety flies with
probability 16/17.

We use this example to define our notion of subjective degree of belief:

Definition 8 Let ¢ be a sentence of positive first-order logic. Assume
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that relative to a constraint C, ¢ has minimal models in a structure M
with n elements. Then the conditional subjective degree of belief
Pr([¢ | ¢];n,C) is defined to be the quantity

1 card{e:sde& e =1}
N 2

T card{e : s § e}

where N is the cardinality of U(p).

Example. Referring to the case of Tweety above, we have
Pr([Fly(Tweety) | t);n,C) = 2/3.

Note the non-dependence on n. This raises a question about limits as n gets
large, a topic which we must defer here. The full story is more nearly told
in (Grove et al. 1992), which refers to the notion of limit law for models in
first-order logic. The problem seems to be that in many examples of the
above type, there is covergence of the subjective degree of belief measure
in models of size n as n grows without bound. However, there seems to be
no characterization of exactly when this happens, and simple (non-natural)
examples show that limits need not always exist.

Here is what we mean now by “attunement.” Notice that if we change
our set of predicates and constraints to the case of seventeen bird types,
but retain the rule system for three types, then we still get the same degree
of belief (2/3) for Tweety’s flying. Imagine that the universe had had
seventeen bird types all along, with the constraints for those types. Then
our agent, living in a small portion of the world (is there a situation with
penguins and hummingbirds in it?) might have only observed the three
types of birds. In that case, her 2/3 subjective degree of belief would not
be as correct as it could be. Traveling to Australia might help refine the
defaults.

Our definition bears a strong resemblance to the notion defined by Bac-
chus, Grove, Halpern, and Koller (Bacchus et al. 1993.) Their definition of
the conditional probability of a statement v given another statement ¢,
though, is not made with reference to a given default information system.
Instead, defaults are “translated” into a special logic for reasoning about
statistical information. (For example, one can say that the proportion of
flying birds out of all birds is approximately .9). Then, the translated de-
fault statements, and the given formulas ¢ and v are given a conditional
probability in a standard first-order structure. Our corresponding “trans-
lation” of default statements is into a system of default rules, just as in
Reiter’s formulation. Our semantics also contrasts with that of BGHK in
that it looks at partial worlds as well as total ones, and can assign degrees
of belief to a statement’s not being resolved one way or another.
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5.2.1 Nixon revisited

The method of default model theory can be adapted to differing kinds of
logics for reasoning about default models. This will help us make use of a
more specific logical language, should that be appropriate. We illustrate
this with an improved model of the Nixon Diamond, using the BGHK
probabilistic language.

Example (Nixon.) A fraction a of quakers are pacifists, and a
fraction § of republicans are non-pacifists. These are our constraints on
any actual world, but which people are pacifists currently is not known.
Our version of the logic of BGHK has as atomic formulas

pr-p(T) =i a,
which means that “the proportion of elements z satisfying ¢(x) is approx-

imately «.” Here « is a rational fraction in [0, 1], and the subscript i refers
to the i-th component of a “tolerance vector” of positive reals

T:<7'17-..,Ti,...>

which is supplied with a standard finite first-order structure M. The se-
mantics is that (M, 1) = pz.p(x) ~; a if the fraction of domain elements
satisfying ¢ is within 7; of a. Here we set i = 1 and can actually fix 7; = 0.
We thus want our background constraints to be

Cla, B) = pa.(Pac(z) | Qu()) ~ a A pa.(~Pac(x) | Rep(x)) = b.

This formula uses conditional expressions of the form px.(¢p | 6), the se-
mantics of which in BGHK are a bit tricky when there are no domain
elements satisfying 6, but which are not a problem in our case, as the ex-
pression denotes the fraction of domain elements satisfying ¥ A 6 divided
by the fraction satisfying 6, and we will always have positive numbers in
the denominator.

We are interested in what happens as we vary « and 3. But we keep
these parameters fixed for what follows. Suppose now that our given in-
formation is “there are exactly N real quakers” and “there are exactly M
real republicans.”, and that there is exactly one quaker-republican, and
that Nixon is that one. The Bacchus logic cannot easily express such
statements. So instead of calculating a conditional “probability”, we just
consider a world which has exactly this information. We further simplify
matters by assuming that N and M are chosen so that the numbers aN
and SM are whole numbers. We consider a model of size N+ M — 1. What
is the degree of belief in Nixon’s being a definite, true pacifist? We assume
our model consists of the integers from 1 to N 4+ M — 1 and interpret Nixon
as N.

One world satisfying our conditions is a situation sg containing the
infons

{qu,m;1) for 1 <n < N
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and
{(rep,m;1) for N <m < N+ M — 1.

Also we have N is Nixon. Now any permutation of the set of N + M — 1
elements keeping Nixon fixed will do as another minimal situation express-
ing that there are exactly N quakers and M republicans. These would
all assigned equal probability, and the computations would be the same in
each case. Thus to get the subjective degree of belief of Nixon being a true
pacifist, it suffices to consider the situation first described, and to calculate
the fraction of extensions of this situation in which Nixon is actually a true
pacifist. This is the degree to which Pac(N) is believed, or the subjective
probability of Pac(N).

In this setting, we are interested in the probability of a formula’s not
being supported one way or another. So by —¢ we will now mean the
weak negation of ¢. A situation will support —¢ iff it does not support
¢. We do want to talk about true warmongers, and we will do this with
new predicate symbols. The predicate N Pac(z) will be interpreted as true
warmongering. We therefore have to add the constraint that no individual
is a true warmonger and a true pacifist at the same time.

Our infons will have the form (o, m; 1)), where o is one of {rep, qu, pac}.
(The predicate symbol N Pac will be interpreted by {(pac, m;0)).)

We could calculate degrees of belief (1) when there are no defaults, (2),
when we have the default constraint only that typically republicans are
warmongers, (3) when we have only the default constraint that typically
quakers are pacifists, and (4) when we have both (2) and (3). The defaults
satisfying these constraints are taken to be

{{rep,m; 1)) : {{pac, m; 0))
{(pac, m;0)

(N<m<N+M+1);

and
{qu,n; 1)) : (pac,n; 1)
{(pac,n; 1))

The first case is easily handled. There is only one extension, namely
the current world. In this world, true pacifism is not known, and true
warmongering is not known. So “neither”, namely = Pac(N) A =N Pac(N)
has probability 1. Pac(N) and N Pac(N) both have probability 0.

We omit cases (2) and (3) for lack of space, and proceed to case (4). A
detailed calculation reveals

(1<n<N).

1 —
Pr(Pac(N) | so) = 0‘1(_70?.
Similarly, the degree of belief in Nixon’s warmongering is
1—
Pr(NPac(N) | o) = 51(_70[?.
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The degree of belief in neither (the agnostic position) is

1—(a+8)+ap
1—ap |
In all of these expressions sg is just our starting situation.

Notice how the choice of v and 3 influences the number aﬁ—;g) If they
are chosen close to 1, the value is indeterminate, unless assumptions are
made about how a and § approach 1. When o = [, for example, then
we get a .5 limit. We also get a .5 limit for warmongering, and an 0 limit
for being undecided. On the other hand, when @ = 8 = 0, we get all of
the weight on being undecided. But this is natural given that our defaults
“program” us to assume that quakers are normally pacifists, and repub-
licans are normally warmongers, in the face of the background constraint
that there are no quaker pacifists, nor any republican warmongers. In this
case we are stuck with our initial situation. Again we see a case of attune-
ment. If our default constraints are unrealistic, we cannot use them to get
information.

Pr(=(Pac(N)V NPac(N)) | so) =
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