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Abstract. Default model theory is a nonmonotonic formalism for representing and
reasoning about commonsense knowledge. Although this theory is motivated by ideas in
Reiter’s work on default logic, it is a very different, in some sense dual framework. We
make Reiter’s default extension operator into a constructive method of building models,
not theories. Domain theory, which is a well established tool for partial information in the
semantics of programming languages, is adopted as the basis for constructing partial models.
One of the direct advantages of default model theory is that nonmonotonic reasoning can be
conducted with monotonic logics, by using the method of model checking, instead of theorem
proving.

This paper reconsiders some of the laws of nonmonotonic consequence, due to Gabbay
and to Kraus, Lehmann, and Magidor, in the light of default model theory. We remark
that in general, Gabbay’s law of cautious monotony is open to question. We consider an
axiomatization of the nonmonotonic consequence relation omitting this law. We prove a rep-
resentation theorem showing that such relations are in one to one correspondence with the
consequence relations determined by extensions in Scott domains augmented with default
sets. This means that defaults are very expressive: they can, in a sense, represent any rea-
sonable nonmonotonic entailment. Results about what kind of defaults determine cautious
monotony are also discussed. In particular, we show that the property of unique exten-
sion guarantees cautious monotony, and we characterize default structures which determine
unique extensions.

1An earlier version was presented at the Third Bar-Ilan Symposium on the Foundations of Artificial
Intelligence, Bar-Ilan University, Israel, July 1993.

1



1 Introduction: Default models versus theories

The purpose of this paper is to explore just one of the directions suggested by making
default systems, as in Reiter’s work [19], into constructions for building partial models for
various kinds of logic. Our reasons for undertaking this task are not just to propose another
nonmonotonic formalism, but to try to correct some of the well-known problems with default
logic, while at the same time generalizing default systems to a far wider setting than just
first-order logic. This paper does not address the former issue in any detail, but it provides
some evidence that the latter project is a good one. For the sake of completeness, though,
we recall some of the difficulties with default logic, before giving a general introduction to
our methodology, which we call default model theory. We presume a basic familiarity with
default logic on the reader’s part; for a general overview consult [4].

1.1 Why not default logic?

Among the recognized problems with default logic are the following.

• There can be multiple extensions, or competing theories.

• Extensions may not exist.

• Even when extensions do exist, it can be too costly or impossible (in terms of an effec-
tive procedure) to find them, because consistency for first order logic is undecidable.

• Reasoning by cases fails.

• Default logic is not cumulative [16].

Proposals for amending these faults are numerous, such as disjunctive default systems
[18], Brewka’s cumulative default logic [5], and so forth. However, there is no known remedy
so far that fixes these problems all at once. On the contrary, it is often the case that further
problems are introduced with the amendments.

We do not propose here to solve all of these problems with one magic system, but we do
want to suggest one reason why so many approaches have not worked well. This is because
nonmonotonic reasoning is essentially about incomplete information (or partial information),
in a model-theoretic sense, but the model theory of the logics used is not. Incomplete
information is a key aspect of nonmonotonic reasoning because you conclude, for example,
that a specific bird flies in absence of the information that it is a penguin. You expect to
meet a flight at the airport at its scheduled arrival time in absence of the information that
the flight is delayed. You base your decisions (in the second case especially) not only on
properties assumed about airports, but on the partiality inherent in a real-world situation.

Many current approaches to default reasoning are based on the total models used in
classical first order logic 2. This presents a fundamental mismatch between the theoretical

2Of course, probabilistic tools can and have been used for this purpose. But in many cases, probability
distributions and/or statistical information is unavailable.
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tool on the one hand, and the phenomena we want to describe on the other. The basic view
of classical logic is total: every issue is settled as either true or false, and truth values never
change. In commonsense reasoning, our conclusions cannot be supported by proofs in the
mathematical sense, and we need to take action in situations of partial information. The
only place such information resides, in traditional default logic, is in the incompleteness of
default theories. But it seems that the lack of information about an airplane’s arrival time
is not well captured by an incomplete scientific theory of its particular flight.

One can argue that the reason for using first order logic is that it is the most well
established formalism that is familiar to many. But familiarity with a tool should not be
enough reason for applying it in every knowledge representation task. To be sure, a case can
be made in favor of using classical logic: Any meta-formalism withstanding the scrutiny of
mathematical rigor may eventually be translated into certain forms of mathematical logic,
first or higher order (such as ZF set theory). Therefore, the use of classical logic is in some
sense inevitable. So, why not start there right from the beginning? The answer is clear: one
should use mathematical tools appropriate for a given modeling task. Differential equations,
for example, are entirely appropriate for predicting trajectories. First-order logic, including
the theory of real numbers implicit in Principia Mathematica, is an inappropriate tool for
that purpose.

The first systematic and extensive research project questioning the ubiquity of first-order
logic, and in fact formal logic in general for the semantics of natural language, is perhaps
Situation Theory, pioneered by Barwise and Perry [3] in the early 80’s. Situation Theory
takes the stand that the key issue for (any) logic is first and foremost its informational
character, not languages or proof systems.

We recognize that stressing the need for an independent basis for nonmonotonic reasoning,
which treats partial information as a first class citizen, should not be taken as a denial of the
value of more than a decade’s research in this area. We believe that many of the intuitions
are sound and productive, and we want to take advantage of them. The idea of an extension
in default logic, for example, is one of the key methods for building partial models in default
model theory.

1.2 Why default model theory?

Is there a way to get rid of the problems with default logic, once and for all? Although
more work still needs to be done, we believe that default model theory is on the right track
towards this goal.

The basic observation of default model theory is that nonmonotonic reasoning is funda-
mentally about partial information, and, therefore, needs to be explained using a full-fledged
theory of partial information. If we should not automatically build everything by extending
first order logic, then what else can we use? Fortunately, results in the area of semantics
of programming languages provide a rich class of tools for dealing with partial information.
Domain theory, as developed by Scott and many others since the early 70’s, is concerned
with computable or constructive methods for building partial models of programs. A number
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of tools have been developed in domain theory for dealing with a variety of partial models,
nondeterministic programs, Petri nets, event structures, and the like. Partial information is
a core concept in this theory.

For this reason, our basic approach to default reasoning uses the theory of domains. We
view Reiter’s default rule systems as nondeterministic ‘algorithms’ for populating a (partial)
model with elementary facts about particular situations. This is in exact analogy with (in
fact a generalization of) Scott’s concrete characterization [23] of consistently complete ω-
algebraic partial orders (Scott domains) using the technique of information systems. In that
construction, elementary ‘tokens’ are added to a partial model according to a monotonic
rule system. We augment Scott’s monotonic rules with default rules to obtain a class of
default information systems. For these systems, we construct extensions of a given world, as
in Reiter’s work [19], but these extensions are models, not theories.

We suggest that Reiter’s default systems should be regarded as semantic, not syntactic
notions. This is a radical reconstruction of default reasoning. We call our thesis, together
with its supporting evidence, default model theory. As a result, many of the current applica-
tions of nonmonotonic logic can be seen, using a unified framework, in an entirely different
light. We provide an introduction to the basic properties of default structures in [21]. We
have proposed a default partial model semantics for first order logic in [22]. Soundness and
completeness results for a propositional modal logic of belief have been obtained, again using
default structures as models [20].

We emphasize that the purpose of default model theory is not to amend or extend default
logic, but to parallel it. Therefore, we suggest the reader not to try to fit this paper into the
realm of default logic.

At a first glance, the shift from the proof theory of default logic to a semantic theory about
partial information may not seem too drastic. However, the philosophy behind default model
theory is fundamentally different, and the consequences are significant. We now explain why,
in default model theory, at least some of the problems with default logic can be ameliorated.

Multiple extensions. When extensions are regarded as partial (possible) worlds, the
extension relation is similar to the accessibility relation in Kripke structures. A default
rule functions here not as an extended proof rule, but as part of a constructive procedure
for building an agent’s most plausible worlds extending the current one. There can be
many different worlds considered most plausible from the current world. So the possibility
of multiple extensions becomes a feature, not a bug – Kripke structures would be rather
uninteresting if there were only one world accessible from the current one.

Existence of extensions. When defaults are regarded as a constructive method for
building worlds, we make some room for accommodating different model building proce-
dures. Reiter’s extension operator, when phrased model-theoretically, remains one of the
key ‘algorithms’ for building preferred worlds. However, extensions may not exist in some
reasonable cases. To cope with this, we have introduced the notion of a ‘dilation’ [21], which
is a robust generalization of the notion of an extension. Dilations exist in all reasonable
cases, including semi-normal defaults. Extensions, when exist, are minimal dilations. Even
dilations may not exist for some defaults, however. But examples [21] show that when that
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happens, the blame goes to the inherent incompatibility of defaults, not to the method of
dilation itself. One can imagine having two defaults

X : ∅
a

,
X : ∅
¬a ,

which are fundamentally incoherent, with the ‘justification’ parts unrelated to the applica-
bility of the defaults. One should not expect any notion of an ‘extension’ to exist for such a
default set. (This paper does not treat dilations per se. We are concerned with the standard
case of normal defaults.)

Monotonic logics. One direct benefit of making default models and not default theories
is as follows. Our modal logics for belief, derived from default semantics, are monotonic and
they have all the properties one expects of a logic in the standard sense. For example, we
have a sound and complete proof system for a propositional modal logic, including the belief
modality B, where Bϕ means that in our current world, ϕ holds in all default extensions.
Our modal logic is decidable, with validity being co-NP-complete.

What is it that makes it possible to do nonmonotonic reasoning using a monotonic logic?
The fact that extensions in default model theory are partial models makes it possible to
reason by model checking, as advocated by Halpern and Vardi [10]. Nonmonotonic reasoning
can be reduced to, for example, checking if x |= Bϕ holds, instead of whether or not ϕ follows
from x by applying certain extended deduction rules for first order logic. A simple example
illustrates the difference here: in partial models, it may be the case that Fred’s deadness
is not supported by a model which only has the information that Tweety is a bird. Using
classical negation for the sake of argument, this would be expressed by

{Bird(Tweety)} |= ¬Dead(Fred).

But it is absurd to assert that Bird(Tweety) should have ¬Dead(Fred) even as a default
consequence. In default model theory, nonmonotonicity appears in a different form: a belief
Bϕ supported in a situation x (written x |= Bϕ) may become unsupported in a situation y
with more information (x ⊆ y, but y �|= Bϕ).

Computational cost. Default model theory is intuitively computationally less complex
than the highly undecidable default logic. This is partly because model checking is gener-
ally easier than theorem proving [10], and partly because situations are typically made of
only atomic, propositional statements (considered as databases), not arbitrary first order
formulas.

Here we share the view of Levesque [13] about vivid knowledge bases:

In the early days of AI, we had a model of intelligence based on powerful general
methods such as resolution, heuristic search, means-end analysis, and so on.
The end result of this view of AI was inevitably combinatorial explosions and
disaster. Now, in the enlightened era of knowledge-based AI, instead of general
methods, we use large amounts of domain-dependent knowledge, and instead of
combinatorial explosions, we end up with expert systems that work.
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But

Why should it be computationally easy to apply large amounts of domain-
dependent knowledge?

The reason is, as Levesque points out, that our knowledge bases are vivid, in the sense that
it is conjunctive and propositional in nature, and it can be regarded as a model of itself.
Our situations x are just like vivid knowledge bases. These arguments suggest that it will
be computationally feasible to do nonmonotonic reasoning in default model theory.

Reasoning by case analysis. Suppose that we are given the defaults

q : p

p
and

v : p

p
.

Now we would like, given q∨v, to be able to conclude ‘by default’ that p. Using default logic
we cannot even apply the defaults, because neither q nor v is provable from q ∨ v. Under
default model theory, because of the model checking method used, any state (partial model)
x which supports q∨ v does have p in all its extensions. This is because whenever x |= q∨ v,
it must be the case that either x |= q, or x |= v. It then turns out that in either case p is in
the relevant extension.

The use of default models is in some sense anticipated by the work of Guerreiro and
Casanova [7] and Lifschitz [15]. Our definition is much more radical than theirs. Although
their semantics involves a fixed-point construction in model-theoretic space, they still regard
extensions as theories. However, our extensions are directly constructed by default rules
operating in semantic space, whereas for Lifschitz, extensions are only to be found in the
syntactic domain.

1.3 Nonmonotonic entailment

We now focus on the main topic of the paper: the laws that can govern nonmonotonic rea-
soning. Since Gabbay [6], a considerable amount of work has been done on axiomatizations
of nonmonotonic consequence relations, here denoted by |∼. Before we get into the more
technical details of our framework, we give an intuitive description of our interpretation of
|∼. Let ϕ and ψ be certain formulas, propositional or otherwise. With respect to a given
default structure, a formula ϕ nonmonotonically entails a formula ψ, written as

ϕ |∼ ψ,

iff ψ is satisfied in every extension of any informationally minimal partial model of ϕ.
Several points should be made about our definition of nonmonotonic consequence. First,

it uses extensions as models, not theories. Thus it makes sense in default model theory
to say that a formula is satisfied in an extension. Second, the intuitive interpretation of
our entailment is “if I can confirm only the information given by ϕ, then I can believe
(skeptically) ψ.” This idea is related to, but is not the same as, the notion of “minimal
knowledge”, or “only knowing”. [9, 14]. These authors initiated the use of maximal models
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to capture “minimal knowledge”, because for them partiality of information is captured by
the partiality of a theory. We capture the notion in a dual sense: by the use of minimal
partial models. We regard partial models as sets of tokens, each of which carries a “unit” of
information. Minimality of a partial model is measured by set inclusion. If, for example, we
are given the formula Bird(tweety), then the minimal information conveyed by the formula
is a partial model of the formula simply consisting of the one ‘first-order tuple’ 〈〈bird, tw; 1〉〉.
Given a theory I, we look at all the minimal partial models of the formulas in I. We call this
the the minimal information conveyed by the theory I. This is really the approach taken
by circumscription as well, since circumscription would rule out the possibility that Tweety
is a penguin by minimizing the class of abnormal birds. (A formal comparison between our
method and circumscription is made difficult by the fact that we work with partial models
and circumscription works with total ones.)

To sum up this discussion, we might say that minimizing knowledge is done by maximizing
models. For us, minimizing information is done by minimizing models. Then we use default
systems to recreate belief spaces from minimal information.

What properties should be required of |∼? Many authors, in particular Kraus, Lehmann,
and Magidor [11], have considered Gabbay’s axiom of cautious monotony:

X |∼ a & X |∼ b⇒ X, a |∼ b.

This axiom is often interpreted as (for example, in [12]): the learning of a new fact, the truth
of which was expected, cannot invalidate a previous conclusion.

Following our intuitive interpretation of nonmonotonic entailment, we soon realize that
cautious monotony need not be universally valid. Here is an example which seem to invalidate
the axiom. It relies on the canonical example of birds, penguins and flying. Any notion of
nonmonotonic consequence will have to deal with this example, in such a way that

bird |∼ fly (1)

holds in the system. By a standard logical weakening, we should also have

bird |∼ fly ∨ penguin. (2)

Applying cautious monotony, we get

bird, (fly ∨ penguin) |∼ fly. (3)

But it is questionable to accept (3) as a reasonable instance of nonmonotonic entailment. The
natural language reading of (3) is something like this: “a bird flies, even if it is a penguin”,
which is counter-intuitive.

This of course does not mean that there is no other interpretation which could justify the
cautious monotony law. In fact, probabilistic analyses of defaults, such as those in Adams [2],
and subsequently Pearl [17], among many others, have included cautious monotony as one
of the ‘core laws’ which should hold in any reasonable calculus of approximate reasoning.
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Statement (3), for example, can be justified on a probabilistic basis, since the non-flying
birds are very rare compared to the bird population. Why, then, does this conclusion seem
unintuitive? The answer lies, we think, in the use of default reasoning in natural language.
As Pearl points out:

In the logical tradition, defaults are interpreted as conversational conventions,
rather than as descriptions of empirical reality ... The purpose ... is not to
convey information about the world, but merely to guarantee that, in subsequent
conversations, conclusions drawn by the informed will match those intended by
the informer [17, Section 1].

We agree in part with this analysis, but we also note that generics have been analyzed in
the tradition of philosophical logic as if they were intended to convey at least approximate
information about the world.

Adams’ ε-semantics verifies the cautious monotony law, but involves interpreting defaults
in a limit sense: ϕ |∼ ψ is interpreted as saying that the conditional probability of the
statement ψ given ϕ can be made as close to 1 as desired, relative to a notion of admissible
probability distributions, allowed by prespecified default constraints. On the other hand, a
more simple-minded interpretation of the entailment ϕ |∼ ψ – that the conditional probability
of ψ given ϕ is greater than or equal to a fixed constant – does not verify them. So at least
there is some room for arguing that cautious monotony needs not be universal.

We now turn to a brief comparison of our information-based semantics with the cumula-
tive model semantics of Kraus, Lehmann, and Magidor. This would explain, in particular,
why cautious monotony holds in their framework, but not ours. Intuitively, a cumulative
model is made of a set of states, a possible worlds function, which assigns to each state a set
of plausible worlds, and a well-founded preference relation between states. With respect to
a cumulative model, ϕ |∼ ψ iff for any most (maximally) preferred state all of whose possible
worlds satisfy ϕ, the plausible worlds in that state also satisfy ψ. Moreover, the preferential
models are those where there is exactly one world plausible in each state. Cautious monotony
now follows fairly easily in both these cases.

It seems natural in our case to take the inclusion relation on partial models as the
preference relation, with minimality of information corresponding to maximally preferred
states. (This gets at the idea of “all else being equal.”) Then the worlds plausible in
a situation correspond to the extensions of that situation; this is exactly the tradition of
Kripke semantics, except that the extensions are explicitly constructed using defaults. With
respect to a default model, ϕ |∼ ψ iff given any state x with only the minimal information
to support ϕ, all the extensions for x satisfy ψ. We have, for example, bird |∼ fly, because
given a state where you only have the information that something is a bird (and without the
extra information that it is a penguin), the most plausible states support that it flies. This
matches our intuition: to conclude a bird flies in absence of the information that it doesn’t.

It is now clear that we cannot accept

bird, (fly ∨ penguin) |∼ fly
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as a valid instance of nonmonotonic entailment under our interpretation. There are two
minimal information states which support bird ∧ ( fly ∨ penguin), one of which is the
state with only the information that the bird is a penguin. Of course its extended states do
not support that the penguin flies.

1.4 Contributions of this paper

One cause for the seeming failure of cautious monotony is the disjunction used in the setting
where pieces of information have propositional structure (call this the logic setting). This
may lead us to believe that a similar failure would not occur in a setting where nothing is
assumed about internal structure of pieces of information (call this the abstract setting.)
However, things are not that simple. As noted earlier, the set of axioms satisfied by the in-
duced nonmonotonic consequence relation crucially depends on the method used for building
the partial worlds. Although Reiter’s notion of an extension is an important one, it violates
cautious monotony even in the abstract setting. (However, we do not have a strong intuition
why cautious monotony should fail in this case. In fact, it need not fail in the abstract
setting – see discussion in the conclusion section.)

The rest of this paper will focus on the abstract setting of nonmonotonic entailment. We
summarize the main results of this paper, in order of perceived importance:

• We recast the issues involved in the study of the abstract nonmonotonic entailment
relation into the bigger picture of default model theory. This paper is not merely about
“yet another theory for nonmonotonic entailment”. Rather, it is an integral part of
a more ambitious effort to reformulate nonmonotonic reasoning, as explained earlier.
The main tool used to do this is the notion of a “nonmonotonic information system”.
This is a generalization of Scott’s information systems, so we are already including all
Scott domains in our theory.

• We prove a representation theorem which characterizes the properties of a nonmono-
tonic entailment relation defined via the axioms of a nonmonotonic information system,
in terms of default rules and extensions. This establishes a close connection between
defaults and the abstract nonmonotonic entailment relation, which has not been es-
tablished in such a general setting (most representation theorems assume a framework
of a classical propositional language).

• The abstract nonmonotonic entailment relation derived by using the construction of
extensions does not in general satisfy the cautious monotony law. Examples and dis-
cussions are provided to explain this.

• Subclasses of defaults are identified for which cautious monotony does hold. In par-
ticular, unique extension guarantees cautious monotony, and we provide a sufficient
condition for defaults to determine unique extension.
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• The abstract nonmonotonic entailment relation is represented in the setting of complete
partial orders and Scott open sets, showing the generality of the issues involved. It also
establishes a framework where the rich set of results in domain theory can be directly
applied.

• Finally, a distinguished aspect of our general methodology is that it is semantics based.
This means that we do not start from a pre-selected set of axioms for nonmonotonic
entailment, and then think about what kind of models are appropriate. Instead, we
start from the default models right at the beginning, and then derive a set of valid
axioms for the models.

In the sequel, we give a brief introduction to Scott domains in Section 2, mostly via the
notion of information systems. The basics of default model theory are presented in Section
3, and our representation result is given in Section 4, for non-cumulative systems. Section
5 studies subclasses of defaults for which cautious monotony holds. Section 6 discusses
nonmonotonic entailment in a general topological setting, a natural step from the domain
theory point of view. The last section discusses further work.

2 Domain Theory, Information Systems, and Cpos

This section gives a brief introduction to domain theory for readers who may not be familiar
with this area.

Domain theory is a branch of theoretical computer science developed by Scott and others
for the semantics of programming languages. The development of domain theory, in the late
1960’s, started with the observation that there were no mathematical models for the lambda
calculus, although the calculus was taken as a formalism in which to interpret programming
languages such as Algol 60. To have a sound foundation for the semantics of programming
languages, a mathematical model for the lambda calculus seemed to be desirable. However,
it was not easy to come up with such a model, because of the high-order functional charac-
teristic of the lambda calculus: a term can take another term as its argument. There had to
be a way to solve equations like (D → D) = D, where (D → D) is a set of certain functions
from D to D. A naive set theoretical construction, taking (D → D) to be that set of all
functions from D to D, does not work, because (D → D) always has a larger cardinality than
D for non-empty D. Scott’s idea was to work with partial objects, instead of total objects.
Total objects, however, can be approximated by increasingly better approximations. This
leads us to the theory of domains.

The basic structures of domain theory are complete partial orders (cpos). A complete
partial order is a partial order (D,�) with a least element ⊥, and least upper bounds of
increasing chains

x0 � x1 � x2 � · · · .
When we write x � y, we mean that x is an approximation to y, or y contains more
information than x. A subset X ⊆ D is bounded (or compatible, consistent, X ↑) if it has
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an upper bound in D. Thus for a bounded set X all the elements in X can be thought of as
approximations to a single element. A compact (or finite) element a of D is one such that
whenever a � ⊔

i xi with
x0 � x1 � x2 � · · · ,

we also have a � xk. We write κ(D) for the set of compact elements of D, and let a, b, etc.
range over compact elements. A cpo is algebraic if each element of which is the least upper
bound of a increasing chain of compact elements. A cpo is ω-algebraic if it is algebraic and
the set of compact elements is countable. A Scott domain is an ω-algebraic cpo in which
every compatible subset has a least upper bound. By convention, we write x ↑ y if the set
{x, y} is bounded.

There is much more to domain theory than can be summarized here. Readers who are
interested in finding more about it should consult [23, 8, 25, 1, 26]. In the remainder of this
section we review a concrete representation of Scott domains, called information systems,
which will be used in this paper.

An information system consists of a countable set A of tokens, a subset Con of the set
of finite subsets of A, denoted as Fin(A), and a relation � between Con and A. The subset
Con on A is often called the consistency predicate, or the coherent (compatible) sets. The
relation � is called the entailment relation, or the background constraint. The intended
usage of the consistency predicate and the entailment relation suggests that we put some
reasonable conditions on them. This results in the following definition.

Definition 2.1 An information system is a structure A = (A, Con, � ) where

• A is a countable set of tokens,

• Con ⊆ Fin (A), the consistent sets,

• �⊆ Con× A, the entailment relation,

which satisfy
1. X ⊆ Y & Y ∈ Con⇒ X ∈ Con,

2. a ∈ A⇒ { a } ∈ Con,

3. X � a & X ∈ Con⇒ X ∪ { a } ∈ Con,

4. a ∈ X & X ∈ Con⇒ X � a,
5. ( ∀b ∈ Y.X � b & Y � c ) ⇒ X � c.

Let us explain these conditions by taking the token set to be {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The
first condition says that any subset of a coherent set must be coherent. So, if {1, 2, 3} is a
coherent set for an information system, then {1, 2} must also be a coherent set, and similarly
for {2, 3}, {1, 3}, etc. The second condition requires that each single token must be coherent
– otherwise we can do without it. The third condition says any token entailed by a finite set
must be coherent with the set. For example, if we have {1, 2, 3} � 4, then {1, 2, 3, 4} ∈ Con.
The fourth condition is a form of reflexive property for �. The last condition is a kind of
transitive property for �. It makes most sense if we consider a finite coherent set X as a
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conjunction of tokens in X. That is, when we write {1, 2, 3} � 4, we can imagine 1∧2∧3 � 4.
It is then reasonable to insist that if 1∧2∧3 � 4, 1∧2∧3 � 5, and 4∧5 � 6, then 1∧2∧3 � 6.

Although the consistency predicate Con and the entailment � can be regarded as a
generalization of those derived from the first order logic, it is important to note that they
are primitive for an information system. Therefore, the decidability of Con and � are often
built in to typical information systems.

It should also be pointed out that the user has full control of what Con and � are going
to be, as long as the properties required for an information system are not violated. For the
same token set A, a change of relations Con and � merely results in a different information
system. Whether one information system is better than another depends on the application
at hand.

Example. This information system is for approximating real numbers. For tokens,
take the set A to be pairs of rationals 〈q, r〉, with q ≤ r. The idea is that a pair of rationals
stands for the information that a yet to be determined real number is in the interval [q, r]
whose endpoints are given by the pair.

Define a finite set X of ‘intervals’ to be in in Con if X is empty, or if the intersection of
the ‘intervals’ in X is nonempty. Then say that a set X � 〈q, r〉 iff the intersection of all
‘intervals’ in X is contained in the interval [q, r]. Note that there is only atomic structure to
these tokens. We do not negate them or disjoin them, by our choice. It is straightforward
to verify that the five properties for information systems hold for this case.

�

The notion of consistency can be easily extended to arbitrary token sets by enforcing
the compactness property, i.e., a set is consistent if every finite subset of it is consistent.
Overloading notation a little bit, we still write y ∈ Con, even for infinite y.

Definition 2.2 The collection |A| of ideal elements of an information system consists of
subsets x of propositions which are

1. consistent: x ∈ Con,

2. closed under entailment: X ⊆ x & X � a⇒ a ∈ x.

Information systems provide a way to express knowledge about the world in terms of
coherence Con and constraints �. Elements of an information system are made of tokens
which are coherent, and which respect the constraint. They describe situations, or states
of knowledge, which are ‘partial models’ in the sense that situations usually do not settle
the truth of every issue. One can also regard an information system as a set of rules from
which to construct a Kripke structure. The ideal elements are the possible worlds. The
accessibility relation is set inclusion, corresponding to the direction of information increase.
Moreover, an atomic token is supported in a world just in case that the world contains the
token. In this setting, genuine negative information has to be encoded in tokens as well – we
regard falsity as positive information. So in the case where tokens do encode falsity – which
they need not always do – truth assignment is a partial function, and we should probably
call these structures partial Kripke structures.
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Example. The ideal elements in our approximate real system are in 1-1 correspondence
with the collection of closed real intervals [x, y] with x ≤ y. Although the collection of ideal
elements is partially ordered by inclusion, the domain being described – intervals of reals
– is partially ordered by reverse interval inclusion. The total or maximal elements in the
domain correspond to ‘perfect’ reals [x, x]. The bottom element is the empty set, which can
be regarded as a special interval (−∞,∞).

�

Theorem 2.1 (Scott) For any information system, the collection of ideal elements ordered
by set inclusion forms a Scott domain. Conversely, every Scott domain is isomorphic to a
domain of such ideal elements.

This result is basic in domain theory. We mention this result here to convince the
reader that information systems are thought of as (generators of) semantic structures, not
syntactic entities. (More precisely, our purpose is not to study the syntax of information
systems, which seems straightforward.) Of course, one cannot make the distinction between
syntax and semantics absolute. Any “constructive” mathematical model must by nature be
built from primitive pieces of “syntax”.

3 Normal Default Structures

Now we come to the main definitions of default model theory. Normal default structures
are information systems extended with a set of ‘defaults’ expressing an agent’s belief. Each
default takes the form

X : a

a
,

with X a finite consistent set, and a a single token of the underlying information system.
The idea of the defaults is that one can generate models (states) by finding X as a subset
of tokens in a state under construction, checking that a is consistent with the current state,
and then adding the token a.

Definition 3.1 A normal default information structure is a tuple

A = (A, Con,∆, �)

where (A,Con,�) is an information system, ∆ is a set of defaults, each element of which is

written as
X : a

a
, with X ∈ Con, a ∈ A. If each default is of the form

: a

a
, we call the default

structure precondition free.

The notion of deductive closure associated with standard information systems will be
often used. Let (A, Con, �) be an information system, and G a coherent subset of A. The
deductive closure of G is the set

G := {a | ∃X ⊆fin G. X � a},

13



where ⊆fin stands for “finite subset of”.
Extensions are a key notion related to a default structure. An extension of a situation x

is a partial world y extending x, constructed in such a way that everything in y faithfully
reflects an agent’s belief expressed by defaults. If the current situation is x, then because it
is a partial model, it may not contain enough information to settle an issue (either positively
or negatively). Extensions of x are partial models containing at least as much information
as x, but the extra information in an extension is only plausible, not factual.

The following definition is just a reformulation, in information-theoretic terms, of Reiter’s
own notion of extension in default logic.

Definition 3.2 Let A = (A,Con,∆,�) be a default information structure, and x a member
of |A|. For any subset S, define Φ(x, S) to be the union

⋃
i∈ω φ(x, S, i), where

φ(x, S, 0) = x,

φ(x, S, i+ 1) = φ(x, S, i) ∪ {a | X : a

a
∈ ∆ & X ⊆ φ(x, S, i) & {a} ∪ S ∈ Con}.

Call y an extension of x if Φ(x, y) = y. In this case we also write xεAy, with the subscript
omitted from time to time.

Example. Using the ‘approximating real’ system described earlier, we might like to
say that ‘by default, a real number is either between 0 and 1, or is the number π’. We could

express this by letting ∆ consist of the rules
: a

a
, where a ranges over rational pairs 〈p, q〉

such that p ≤ 0 and q ≥ 1, together with those pairs 〈r, s〉 such that r < π and s > π.
In the ideal domain, we refer to elements by the real intervals to which they are isomor-

phic. The only extension of [−1, 2] would be [0, 1]; the interval [−2, 0.5] would have [0, 0.5]
as an extension, and there would be 2 extensions of [−2, 4], namely [0, 1] and [π, π].

�

More example: the eight queens problem. We have in mind in an 8×8 chessboard,
so let 8 = {0, 1, . . . , 7}. Our token set A will be 8 × 8. A subset X of A will be in Con if it
corresponds to an admissible placement of up to 8 queens on the board. For defaults ∆ we
take

{ : 〈i, j〉
〈i, j〉 | 〈i, j〉 ∈ 8 × 8}.

We may take � to be trivial: X � 〈i, j〉 iff 〈i, j〉 ∈ X. Extensions are those placements
of queens which do not violate any constraints of the rules of chess, and which cannot be
augmented without causing a violation. The eight queens problem can be rephrased as
finding all the extensions of size 8 for ∅.

�

We now look at ways extensions can be constructed for normal defaults. Again, our
construction is a generalization of Reiter’s construction of an extension for a normal default
theory.

14



For a set T of tokens, let M(T ) be the set of maximal consistent subsets of T . For
example, if T is itself consistent, then M(T ) = {T}. Given a normal default information
structure (A,Con,�,∆), extensions can be constructed in the following way for a given x.

Let x0 = x. For each i > 0, let

xi ∈ M(xi−1 ∪ {a | X : a

a
∈ ∆ & X ⊆ xi−1})

with xi ⊇ xi1 .
It is easy to see that xi is an increasing chain. Let M :=

⋃
i∈ω xi. We show that

M =
⋃
i∈ω

φ(x,M, i).

We prove by mathematical induction that

xi = φ(x,M, i)

for each i ≥ 0.
The base case is clear. Assume xi = φ(x,M, i) for some i. Since

xi ⊆ xi+1 ∈ M(xi ∪ {a | X : a

a
∈ ∆ & X ⊆ xi})

= M(φ(x,M, i) ∪ {a | X : a

a
∈ ∆ & X ⊆ φ(x,M, i)}),

we have

φ(x,M, i) ∪ {a | X : a

a
∈ ∆ & X ⊆ φ(x,M, i) & {a} ∪M ∈ Con} ⊆ xi+1.

On the other hand, if a ∈ xi+1, then either a ∈ xi or a ∈ xi+1 − xi. For the latter, we

have
X : a

a
∈ ∆, X ⊆ φ(x,M, i), and {a} ∪M ∈ Con. Therefore a ∈ φ(x,M, i+ 1).

Thus xi+1 = φ(x,M, i+1). Note, however, it is not necessary to take a maximal consistent
set at each step. As long as maximal consistent sets are taken infinitely often, we will get
an extension.

We have, in effect, proved the following generalized Reiter theorem.

Theorem 3.1 Extensions always exist for normal default structures.

The question arises as to whether every extension for x can be constructed in this way.
Although this is true for precondition free defaults, it is not true in general.

Example. Not all extensions can be constructed using the method described above.
Consider the following default structure with defaults

: a

a
,

: b

b
,
a : c

c
,
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but {a, b, c} inconsistent. {a, b} is an extension for ∅ constructed by this method. However,
{a, c}, which is also an extension for ∅, can not be constructed in this way.

�

Example. This example shows that there are extensions that cannot be constructed by
taking any maximal consistent sets. This infinite default structure has defaults

: a1

a1

,
a1 : a2

a2

,
a2 : a3

a3

, · · ·

and
: b1
b1
,

: b2
b2
,

: b3
b3
, · · · ,

such that {bi, ai+1} is inconsistent for each i > 0. One can check that y = {ai | i > 0} is
an extension of ∅, and φ(x, y, j) = {ai | j ≥ i > 0}. None of the φ(x, y, j)’s is maximal
consistent in

φ(x, y, j − 1) ∪ {a | X : a

a
∈ ∆ & X ⊆ φ(x, y, j − 1)},

because {bj} ∪ {ai | j ≥ i > 0} is such a maximal consistent set.
�

We now summarize properties of extensions for normal default structures. (Recall that
xεy means y is an extension of x.)

• Extensions always exist.

• If xεy then y ⊇ x.

• xεy and yεz if and only if y = z.

• If xεy and xεy′, then either y = y′ or y ∪ y′ �∈ Con.

• If xεz and y ⊆ z, then x ∪ yεz.

The proofs of these facts again follow those of Reiter, so we omit them.

4 Defaults and Nonmonotonic Consequences

We are interested in the relation between default structures and nonmonotonic entailment
relations.

In our opinion, axiomatizing nonmonotonic entailment |∼ without referring to a consis-
tency predicate Con does not seem to fully capture our intuition. One thing we would like
to rule out, in particular, is an example like

a |∼ a
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where a is in some sense the negation of the token a. It does not seem reasonable to entail a
piece of information freely from an inconsistent piece. At first sight, this assertion seems to
be directly at odds with the intuition expressed by Kraus, Lehmann, and Magidor, in which
the authors argue for a statement such as

if I’m the Queen of England then anything goes.

Here, “anything goes” may include “I am not the Queen of England”.
Here it is important to remember that our notion of “entailment” is going to be that the

consequent is a piece of information supported by all plausible worlds extending a current
situation itself supporting the antecedent. It is not reasonable to have such worlds contain
pieces of information which contradict facts already known in the current world. Perhaps
better said: we will never entertain worlds which contain contradictory facts like a person
who is not the Queen of England being the Queen of England.

In the study of nonmonotonic consequences, the following Gentzen-style axioms are often
considered. (Here, X |∼ Y is an abbreviation for ∀b ∈ Y X |∼ b.)

Identity: a ∈ X ⇒ X |∼ a.
Cautious monotony: X |∼ a & X |∼ b⇒ X, a |∼ b.
Cut: X |∼ T & T, Y |∼ b⇒ X, Y |∼ b.
Cautious cut: X |∼ T & T,X |∼ b⇒ X |∼ b.

For these axioms, X, Y , and T range over finite sets of formulas, and a and b are single
formulas, and a set X is thought of conjunctively. (The notation X, T stands for X ∪ T .)
We use the form of these axioms as a guide for our abstract formulation.

We next introduce the notion of a nonmonotonic system. Now, in contrast to the above
axioms, we let X, Y , and T range over finite subsets of an arbitrary countable or finite set
A.

Definition 4.1 A nonmonotonic system is a triple

(A,Con, |∼)

where Con is a collection of finite subsets X of A, called the consistent or coherent sets; and
|∼ is a subset of Con×A, called the relation of nonmonotonic entailment, which satisfies the
following axioms:

1. X ⊆ Y ∈ Con⇒ X ∈ Con,
2. a ∈ A⇒ {a} ∈ Con,
3. X |∼ T ⇒ X ∪ T ∈ Con,
4. a ∈ X & X ∈ Con⇒ X |∼ a,
5. X |∼ T & T ∪X |∼ b⇒ X |∼ b.

Note that X |∼ T is an abbreviation for (∀a ∈ T )(X |∼ a), where T is a finite subset of A.
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It is clear that the concept of a a nonmonotonic system is a generalization of the concept
of information system mentioned in Section 2. Axioms 1, 2, and 4 are adopted here without
change.

Axiom 3 is derivable for information systems, but bears some consideration for nonmono-
tonic entailment. It can be regarded as a very weak form of the cautious monotony axiom,
and it expresses as well a kind of skeptical property: come coherence is required of the
conjunction of tokens entailed by the same information. The axiom says precisely that if

X |∼ a1, X |∼ a2, · · · , X |∼ an,

then the set X ∪ {a1, a2, · · · , n} must be coherent. (Note that this is much weaker than
monotonicity, which says that if X |∼ a and Y ⊇ X, then Y |∼ a.)

Is Axiom 3 a bit too strong? Should we never allow instances such as X |∼ a and
X |∼ ¬a to hold at the same time? Although one can argue for not taking Axiom 3, it all
depends on the kind of nonmonotonic entailment to be captured. Here, our skeptical version
of entailment makes it reasonable to require Axiom 3; this will be confirmed later by our
representation theorem. It is important to note that nonmonotonic entailment is different
from default rules, where one does allow

X : a

a
,
X : ¬a
¬a

to appear in the same default set. However, defaults are lower level objects compared to
nonmonotonic entailment. They are primitive construction rules for building models, and
do not express any entailments on their own.

Axiom 5 is the cautious cut. We call it ‘cautious cut’ because sometimes the cut axiom
takes the following form:

X |∼ T & T, Y |∼ b⇒ X, Y |∼ b.

This axiom is equivalent to the more restricted version

X |∼ T & T,X |∼ b⇒ X |∼ b

in the monotonic case, but definitely not in the nonmonotonic case.
Axiom 5 departs most from the corresponding axiom for information systems. By the

fifth axiom for an information system, together with the other axioms, one can derive the
following monotonicity property:

[X � a & (X ⊇ Y ∈ Con)] ⇒ Y � a.

But we do not even require cautious monotony to hold for a nonmonotonic system.
Given a default information structure (A,Con,�,∆), what is the appropriate entailment

relation associated with it? Would it be reasonable to let X |∼ a if
X : a

a
is a default rule?

Although this may seem to be a reasonable translation at first glance, it turns out to be too
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simple-minded. More often than not, no extra conditions are imposed on defaults, as in the
case of the conflicting default rules above. Therefore, we rule out this definition.

The intuitive interpretation of a nonmonotonic entailment X |∼ a in default model theory
is that, if X is our current state of knowledge, then a is believed. If we take extensions as
plausible worlds, then X |∼ a can also be interpreted as a is true in all plausible superworlds
of (the monotonic closure) of X. We point out that this interpretation is a special case of
the general definition we introduced in Section 1.3. We mentioned in that section that

With respect to a given default structure, a formula ϕ nonmonotonically entails
a formula ψ, written as

ϕ |∼ ψ,

iff ψ is satisfied in every extension of any minimal partial model of ϕ.

In the case that ϕ is a finite consistent set of tokens X, the minimal partial model for X is
just X, the deductive closure of X. We arrive at the following definition.

Definition 4.2 Let (A,Con,�,∆) be a normal default structure. We define

X |∼A a

if
∀y[XεAy ⇒ a ∈ y],

where εA is the extension relation for A.

For cases where extensions exist (which is true for normal default structures), X |∼ a is
equivalent to

a ∈ ⋂{y | Xεy},
where subscripts are omitted.

First observe that the nonmonotonic entailment relation determined by a default struc-
ture does not in general have the cautious monotony property.

Example. Consider the following normal default structure (A,Con,�,∆), where

A = {a, b, c},
∆ = { : b

b
,
b : a

a
,
a : c

c
},

{a, b, c} �∈ Con.

There is a unique extension for ∅: {a, b}. There are, however, two extensions for {a}:

{a, b}, {a, c}.

We have, therefore, ∅ |∼ a, ∅ |∼ b, but {a} �|∼ b.
�
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A more convincing example shows that we can have ∅ |∼ a, ∅ |∼ b, but neither {a} |∼ b,
nor {b} |∼ a.

Example. Consider the normal default structure (A,Con,�,∆), where

A = {a, b, a1, b1, a1, b1},
∆ = { : a1

a1
,
a1 : a

a
,

: b1
b1
,
b1 : b

b
,
a : a1

a1
,
b : b1

b1
},

{a1, a1} �∈ Con, {a1, b1} �∈ Con, {b1, b1} �∈ Con, {b1, a1} �∈ Con, {b, a1} �∈ Con, {a, b1} �∈ Con.

There is a unique extension for ∅: {a, b, a1, b1}. However, {a, a1} is an extension for {a},
and {b, b1} is an extension for {b}. Therefore, ∅ |∼ b, ∅ |∼ a, but neither b |∼ a, nor a |∼ b.

�

What we are going to show next is a general result: the |∼ relation associated with every
default information structure forms a nonmonotonic system. The following lemma will be
needed to show the cautious cut axiom holds.

Lemma 4.1 If Zεt and P ⊆ t, then Z ∪ Pεt.
Proof. Recall that Zεt means

t =
⋃
i∈ω

φ(Z, t, i).

We prove by mathematical induction that

t =
⋃
i∈ω

φ(Z ∪ P, t, i).

⊆: Clearly φ(Z ∪ P, t, 0) ⊆ t by the assumption P ⊆ t. Suppose φ(Z ∪ P , t, i) ⊆ t.
Then

φ(Z ∪ P , t, i+ 1)

= φ(Z ∪ P, t, i) ∪ {a | X : Y

a
∈ ∆ & X ⊆ φ(Z ∪ P, t, i) & Y ∪ t ∈ Con}

⊆ φ(Z ∪ P, t, i) ∪ {a | X : Y

a
∈ ∆ & X ⊆ t & Y ∪ t ∈ Con}

⊆ t.

Therefore, φ(Z ∪ P, t, i) ⊆ t for every i ≥ 0.
⊇: Obviously φ(Z ∪ P, t, 0) ⊇ φ(Z, t, 0). Assume φ(Z ∪ P , t, i) ⊇ φ(Z, t, i). Then

φ(Z ∪ P , t, i+ 1)

= φ(Z ∪ P, t, i) ∪ {a | X : Y

a
∈ ∆ & X ⊆ φ(Z ∪ P, t, i) & Y ∪ t ∈ Con}

⊇ φ(Z, t, i) ∪ {a | X : Y

a
∈ ∆ & X ⊆ φ(Z, t, i) & Y ∪ t ∈ Con}

= φ(Z, t, i+ 1).
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Therefore φ(Z ∪ P, t, i) ⊇ φ(Z, t, i) for every i ≥ 0.
�

Theorem 4.1 Let (A,Con,�,∆) be a normal default structure. Define the triple (A,Con, |∼A

), with X |∼A a iff X ∈ Con and

∀y.[Xεy ⇒ a ∈ y].

Then (A,Con, |∼A) is a nonmonotonic system.

Proof . The nontrivial part is the cautious cut. Let X |∼A T , T,X |∼A a. This means

T ⊆ ⋂{y | XεAy}

and
a ∈ ⋂{y | X ∪ TεAy}.

Let t be an extension of X with T ⊆ t. By Lemma 4.1, t is an extension of X ∪ T . However,
a belongs to every extension of X ∪ T . Therefore, a ∈ t and

a ∈ ⋂{y | XεAy}.

�

Now we come to the main result of the paper — the converse of Theorem 4.1. Every
nonmonotonic system is determined by some normal default structure.

When engaged in the preliminary work on this paper, we thought that attempting the
converse of Theorem 4.1 was a bold goal, for several reasons.

• Although the idea of deriving a nonmonotonic entailment from defaults has appeared
in the literature here and there, no one has studied the converse – deriving a set of
defaults ∆ from a nonmonotonic entailment relation |∼, with the property that the
nonmonotonic entailment |∼∆ determined by the default set ∆ is the same as the
original one (|∼ = |∼∆).

• A simple minded approach, which translate each instance of nonmonotonic entailment

X |∼ a into a default rule
X : a

a
, does not work. For example, suppose the nonmono-

tonic entailment contains two instances: ∅ |∼ a, {b} |∼ c, but not {b} |∼ a. The simple
minded approach would result in a default set

∆ = {∅ : a

a
,
{b} : c

c
}.

However, the nonmonotonic entailment determined by the default set would include
the instance {b} |∼∆ a, which is not in the original nonmonotonic entailment relation.
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• In fact, the exact converse of Theorem 4.1 is not true. Suppose we have a nonmonotonic
system with ∅ |∼ a, ∅ |∼ b, but {a} �|∼ b. There are no default structures with exactly
the tokens a and b, which determine the nonmonotonic system. This is because without
new tokens, the default system will have at least two defaults

: a

a
,

: b

b
,

and a, b are consistent. However, that also means {a} |∼ b in the default structure.
Although this example seems to suggest the use of cautious monotony, we have al-
ready pointed out that the nonmonotonic entailment relation determined by a default
information structure does not in general have this property.

• The best thing one can achieve is to find a default structure so that the nonmonotonic
system can be faithfully embedded into the one determined by the default structure.
New tokens are introduced for this purpose. The idea is for each instance X |∼ a, one
introduces a new token (X, a), distinct from the existing ones. It remains to specify
the roles the new tokens will play; in particular, how the consistency predicate is going
to be extended to them. This turns out to be a fairly complicated task: the reader is
encouraged to think about the problem prior to reading the proof below.

• As a corollary, the converse of Theorem 4.1 implies that all cautious monotonic rela-
tions can be faithfully represented by default structures. But default structures are
more expressive than that. They can faithfully represent any reasonable nonmonotonic
consequence relation, and we know exactly what they can represent.

Here is the ‘converse’ of Theorem 4.1.

Theorem 4.2 Let (A,Con, |∼) be a nonmonotonic system. There is a normal default struc-
ture

B = (B,Con′,�,∆)

with B ⊇ A, and
X ∈ Con iff X ⊆ A & X ∈ Con′,

which determines the nonmonotonic entailment |∼, i.e. for X ⊆ A and a ∈ A,

X |∼ a iff X |∼B a.

Example. An example will be helpful to illustrate the idea of the proof. We would like
to construct a default structure B, which determines the nonmonotonic entailment generated
by

∅ |∼ a, ∅ |∼ b,

but
{a} �|∼ b, {b} �|∼ a.
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The defaults are
: (∅, a)
(∅, a) ,

(∅, a) : a

a
,

: (∅, b)
(∅, b) ,

(∅, b) : b

b
,

a : ({a}, a)
({a}, a) ,

b : ({b}, b)
({b}, b) ,

{a, b} : ({a, b}, a)
({a, b}, a) ,

{a, b} : ({a, b}, b)
({a, b}, b) .

For the consistency predicate, we let

{(∅, a), ({a}, a)} �∈ Con, {(∅, b), ({b}, b)} �∈ Con,
{({a}, a), ({b}, b)} �∈ Con,
{({a, b}, t), (Y, s)} �∈ Con if Y �= {a, b},
{b, ({a}, a)}, {a, ({b}, b)} are also inconsistent.

It is routine to check that |∼B a, |∼B b, but neither b |∼B a, nor a |∼B b.
�

We now give a uniform procedure to construct the required default structure

B = (B,�B, ConB,∆)

from a nonmonotonic entailment (A,Con, |∼).
The token set B is

A ∪ {(X, a) | X |∼ a},
where (X, a) are distinguished new tokens. The idea is to introduce a new token for each
instance of the entailment.

Let �B be flat, i.e., X �B a iff a ∈ X. This means �B does not play a key role here; it is
the trivial entailment.

The default set ∆ is ⋃
(Y,b)∈B

{Y : (Y, b)

(Y, b)
,
{(Y, b)} : b

b
}.

That is, each instance of nonmonotonic entailment Y |∼ b will induce two default rules: one

is
Y : (Y, b)

(Y, b)
, and the other is

{(Y, b)} : b

b
. Note that new tokens are used in both rules.

The consistency predicate ConB plays an important role in ensuring the desired effect
on defaults. It is specified by extending the consistency predicate Con to new tokens in the
following way.

1. For (X, a), (Y, b) ∈ B,

{(X, a), (Y, b)} ∈ ConB ⇔ X = Y.

This means two new tokens are consistent just in case they are talking about what can
be nonmonotonically entailed by the same set.
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2. For (Y, b) ∈ B,
X ∪ {(Y, b)} ∈ ConB ⇔ X ∩A ⊆ Ỹ

where
Ỹ := {c | Y |∼ c}.

By Axiom 3, Ỹ is consistent. This specification means that when old and new tokens are
mixed, a set is consistent if and only if all the old tokens are nonmonotonic consequences
of the same set the new tokens are talking about. Note that for a set of old tokens,
consistency remains the same.

We show first that the construction gives us a default structure. We check that the
consistency predicate defined in this way has the required properties. First, each individual
token is indeed consistent. Suppose Z ∈ ConB and W ⊆ Z. Items (1) and (2) above can be
checked and we conclude that W ∈ ConB.

Next, it has to be shown that the default structure B has the required properties. We
will show this using several lemmas.

Lemma 4.2 Let (A,Con, |∼) be a nonmonotonic system. We have, for any consistent set
X, ⋂{Ỹ | Y ⊆ X ⊆ Ỹ } = X̃.

Proof . ⊆: We clearly have X ⊆ X ⊆ X̃. The required inclusion easily follows. ⊇:
Suppose Y ⊆ X ⊆ Ỹ . Because X ⊆ Ỹ , we have Y |∼ X − Y. If X |∼ a, we can rewrite this
as X − Y, Y |∼ a. Now, applying cut, we get Y |∼ a. Therefore X̃ ⊆ Ỹ .

�

Lemma 4.3 Let W be a consistent set in the nonmonotonic system. Put

ρ(W ) = W̃ ∪ {(W, b) |W |∼ b}.

Then ρ(W ) is consistent in the default structure B.

Proof . This is straightforward from the specification of the consistency predicate ConB.
�

Lemma 4.4 Given X ∈ Con, suppose that X ′ is such that X ′ ⊆ X ⊆ X̃ ′. Then ρ(X ′) is an
extension of X in the default structure B.

Proof . Since �B is flat, any consistent set, in particular ρ(X ′), is an ideal element. To
show ρ(X ′) is an extension of X, it is enough to check that

ρ(X ′) = X ∪ {t | Y : t

t
∈ ∆ & Y ⊆ ρ(X ′) & ρ(X ′) ∪ {t} ∈ ConB}.
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Since
X : (X, b)

(X, b)
,
{(X, b)} : b

b

are in the default set ∆ for each b such that X |∼ b, ρ(X ′) clearly is a subset of the right
hand side.

On the other hand, suppose

Y : t

t
∈ ∆ & Y ⊆ ρ(X ′) & ρ(X ′) ∪ {t} ∈ ConB.

If t = (Z, b) for some b ∈ A, then by item 2 for ConB, X ′ = Z. Thus t is already in ρ(X ′).
If t = b for some b ∈ A, then from the style of defaults we know that Y = {(Z, b)} for some
Z, and this means Z = X ′ which again implies t ∈ ρ(X ′).

�

Lemma 4.5 Fix X ∈ Con. Every extension of X is of the form ρ(X ′) with X ′ ⊆ X ⊆ X̃ ′.

Proof . Suppose y is an extension of X. By definition,

y =
⋃
i∈ω

φ(X, y, i),

where φ(X, y, 0) = X, and

φ(X, y, i+ 1) = φ(X, y, i) ∪ {b | Y : b

b
∈ ∆ & Y ⊆ φ(X, y, i) & y ∪ {b} ∈ ConB}.

The default rules are designed in such a way that if b ∈ A∩ φ(X, y, i) but b �∈ X, then there
must be some (X ′, b) already in φ(X, y, i), with the property that X ′ ⊆ X, and X ⊆ X̃ ′.
The latter is required by the consistency condition.

If no (X ′, b)s are in φ(X, y, 1), then φ(X, y, 1) ⊆ X, and we consider φ(X, y, 2), and so
on. Eventually, (X ′, b) ∈ φ(X, y, k) for the first k, with the properties X ′ ⊆ X (implied by
the applicability of the default rule) and X ⊆ X̃ ′ (implied by the consistency requirement).
For each i > k, we have

φ(X, y, i) ⊆ X̃ ′ ∪ {(X ′, b) | (X ′, b) ∈ B},
again by the consistency requirement. Since y ∪ {(X ′, b)} is consistent for some b ∈ A,

y ∪ {(X ′, c) | (X ′, c) ∈ B}
is also consistent, and, moreover, y ∩A ⊆ X̃ ′. This means we have y = ρ(X ′).

�

Proof of Theorem 4.2. Let X, a be in A such that X |∼ a. Lemmas 4.4 and 4.5 say
that the ρ(X ′), with X ′ ⊆ X ⊆ X̃ ′ are exactly the extensions of X. However, Lemma 4.2
implies that

A ∩ ⋂{ρ(X ′) | X ′ ⊆ X ⊆ X̃ ′} = X̃.
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We have, therefore, X |∼B a. On the other hand, if X �|∼ a, then X �|∼B a because the
propositions from A which belong to all the extensions of X are exactly X̃, the set of
nonmonotonic consequences of X. This proves Theorem 4.2.

�

It is worth noting that the construction used in the proof of Theorem 4.2 also tells us
that there is a one one correspondence between those subsets X ′ of X such that X ⊆ X̃ ′,
and extensions for X in the default structure B.

5 Cautious Monotonic Systems

This section treats the cautious monotony axiom in default structures. We show that pre-
condition free default structures give rise to nonmonotonic entailment relations satisfying
this axiom. We also remark that uniqueness of extensions implies cautious monotony (the
converse is not true). To better present the material, we give a name to the collection of
nonmonotonic systems satisfying cautious monotony: cautious monotonic systems.

Definition 5.1 A cautious monotonic system is a triple

(A,Con, |∼)

where (A,Con, |∼) is a nonmonotonic system which satisfies the additional axiom of cautious
monotony:

6. X |∼ a & X |∼ b⇒ X, a |∼ b.

Our first result in this section is the observation that precondition free structures give rise
to an extension relation supporting cautious monotony. We now consider only precondition
free structures.

For the next lemma, some terminology will be useful: given a precondition free default

structure A = (A,Con,�,∆), the set of default conclusions of A is the set {a | : a

a
∈ ∆}.

Further, we say that a set B is compatible with a set x if x ∪B ∈ Con.

Lemma 5.1 Let (A,Con,�,∆) be a precondition free default structure. Then y ∈ |A| is an
extension of x ∈ |A| if and only if there is a subset B of the default conclusions of A which
is (i) maximal with the property that x is compatible with B, and (ii) y = x ∪ B.

Proof. The proof is straightforward from definition.
�

Lemma 5.1 is the key to the following theorem.

Theorem 5.1 Suppose (A,Con,�,∆) is a precondition free default structure. Define the
triple (A,Con, |∼A), with X |∼A a iff X ∈ Con and

∀y.[Xεy ⇒ a ∈ y].

Then (A,Con, |∼A) is a cautious monotonic system.
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Proof . We need only verify that cautious monotony is satisfied because Theorem 4.1
concludes that (A,Con, |∼A) is a nonmonotonic system. Let X |∼A T and X |∼A b. We want
T,X |∼A b. Suppose that y is an extension of (the monotonic closure of) T ∪X. Then there
is a maximal set B of default conclusions compatible with T ∪X, such that y = T ∪X ∪ B.
We want to show that b ∈ y. Define

z = X ∪B.
We claim that z is an extension of X. Clearly X ⊆ z and z is consistent. If z is not an
extension of X, it is because B is not maximal in the sense of Lemma 5.1. That is, there is
some maximal C, a proper superset of B, compatible with X, and such that w = X ∪ C is
an extension of X. By hypothesis, T ⊆ w, and we already have X ⊆ w. So C is a larger set
of default conclusions than B, but compatible with T ∪ X, violating the maximality of B.
This contradiction proves that z is an extension of X. Thus b ∈ z, and since z ⊆ y, we have
b ∈ y as desired.

�

It is worth noting the relation between uniqueness of extensions and the cumulative
property. The following proposition says that if there is only one extension for x, then the
extension can be constructed in a cumulative way, in the sense that it is enough to check
consistency with the current situation (rather than with the yet-to-be found extension) when
applying a default rule.

Proposition 5.1 Let (A,Con,�,∆) be a normal default structure for which extensions are
always unique. Then y ∈ |A| is an extension of x ∈ |A| if and only if

y =
⋃
i∈ω

ψ(x, i),

where
ψ(x, 0) = x,
ψ(x, i+ 1) =

ψ(x, i) ∪ {a | X : a

a
∈ ∆, X ⊆ ψ(x, i), {a} ∪ ψ(x, i) ∈ Con}.

Proof. The proof of Theorem 4.1 illustrates a canonical way to construct an extension.
However, by choosing different maximal consistent subsets, one gets at different extensions.
The uniqueness of extensions imply that there must be only one maximal subset to choose
at each step. By Definition 4.4, for each i ≥ 0, this maximal subset must be

φ(x, y, i) ∪ {a | X : a

a
∈ ∆, X ⊆ φ(x, y, i), {a} ∪ φ(x, y, i) ∈ Con}.

This proves the proposition.
�

The following theorem specifies another class of normal default structures which give rise
to cautious monotonic systems.
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Theorem 5.2 Suppose (A,Con,�,∆) is a normal default structure for which extensions are
unique. Then the induced nonmonotonic entailment |∼A satisfies the cautious monotony law.

Proof. Apply Lemma 4.1 and the unique-extension property.
�

What can we say towards categorizing cautious monotonic systems by default structures?
First, it is easy to see that precondition free structures are not enough. Second, default
structures with unique extensions are not enough either. Third, Theorem 4.2 implies that
each cautious monotonic system can be represented by a normal default structure. We
do not have at present a characterization of those normal default structures which induce
cautious monotonic entailment relations under our interpretation of that entailment using
extensions. We leave this as an open problem; but we remark later that by using dilations
instead of extensions, we can give a representation of cautious monotonic systems exactly as
in Theorem 4.2.

We also remark that if the axiom of cautious monotony is assumed, then the construction
in Theorem 4.2 can be simplified slightly. We close the section with this construction.

Let’s look at a concrete example first. We want to construct a default structure B, which
determines the nonmonotonic entailment generated by

∅ |∼ a, ∅ |∼ b,

and
{a} |∼ b, {b} |∼ a.

The defaults are
: (∅, a)
(∅, a) ,

(∅, a) : a

a
,

: (∅, b)
(∅, b) ,

(∅, b) : b

b
.

The consistency relation is trivial in the sense that everything is consistent.
It is routine to check that |∼B b, |∼B a, and further, b |∼B a, a |∼B b.

�

The key difference from the general construction for Theorem 4.2 is that we do not need
to introduce new tokens for trivial instances of nonmonotonic entailment such as X |∼ a,
where a ∈ X.

In general, the default structure

B = (B,�B, ConB,∆)

is constructed from a cautious monotonic system (A,Con, |∼) as follows.
The token set B is

A ∪ {(X, a) | X |∼ a & a �∈ X},
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where (X, a) are distinguished new tokens. Note the difference from the construction in the
previous section: here we require a �∈ X for (X, a) to be a token of B.

Let �B be flat, i.e., X �B a iff a ∈ X.
The default set ∆ is ⋃

(Y,b)∈B

{Y : (Y, b)

(Y, b)
,
{(Y, b)} : b

b
};

almost the same as before, except that we do not allow default rules where b is already a
member of Y .

The consistency predicate ConB extends Con with the following clauses.

1. For (X, a), (Y, b) ∈ B,

{(X, a), (Y, b)} ∈ ConB ⇔ X = Y.

2. For (Y, b) ∈ B,
X ∪ {(Y, b)} ∈ ConB ⇔ X ∩ A ⊆ Ỹ .

This gives us a default structure B with the required properties. The proof follows
the same structure as that of Theorem 4.2, with a couple of simplifications. Under the
assumption of cautious monotony, we can deduce the stronger result X̃ = Ỹ from X ⊆ Y ⊆
X̃. The extensions of X are exactly sets of the form

X̃ ∪ {(Y, b) | (Y, b) ∈ B & b �∈ X}
with X ⊆ Y and X̃ = Ỹ .

6 Nonmonotonic Entailment in Scott Topology

This section introduces nonmonotonic entailment in a more general topological setting. Our
purpose is twofold: one is to represent nonmonotonic entailment in a more abstract form
so that ideas from domain theory may be directly applied. The other is to prove two new
results characterizing conditions on defaults which ensure cautious monotony. These results
are more illuminating in this general setting.

6.1 Abstract defaults and extensions

Recall (see Section 2) that a Scott domain (D,�) is a cpo which is consistently complete:
every bounded set has a least upper bound. The set of compact elements of a cpo D is
written as κ(D).

Definition 6.1 Let (D,�) be a Scott domain. A default set in D is a subset Λ of κ(D) ×
κ(D). We call a pair (a, b) ∈ Λ a default and think of it as a rule

a : b

b
, though this is an

abuse of notation.
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A notion of extension can be introduced on Scott domains.

Definition 6.2 Let (D,�) be a Scott domain. Let Λ be a default set in D. Write xεy for
x, y ∈ D if

y =
⊔
i≥0

φ(x, y, i),

where φ(x, y, 0) = x, and

φ(x, y, i+ 1) = φ(x, y, i) � ⊔{b | (a, b) ∈ ∆ & a � φ(x, y, i) & b ↑ y}.

When xεy, we call y an (abstract) extension of x.

The following is a characterization of abstract extensions, where � stands for least upper
bound, and � stands for greatest lower bound.

Theorem 6.1 For a Scott domain (D,�) and a subset Λ ⊆ κ(D) × κ(D), we have xεy if
and only if

y = { t | t = x � ⊔{b | (a, b) ∈ Λ & a � t & b ↑ y} }.

Proof. We prove a stronger result: for any y,

⊔
i≥0

φ(x, y, i) = {t | t = x � ⊔{b | (a, b) ∈ Λ & a � t & b ↑ y}}.

We first show that

⊔
i≥0

φ(x, y, i) � {t | t = x � ⊔{b | (a, b) ∈ Λ & a � t & b ↑ y}}.

This is done by mathematical induction on i, to show that whenever

t = x � ⊔{b | (a, b) ∈ Λ & a � t & b ↑ y},

we have φ(x, y, i) � t for all i. Clearly

φ(x, y, 0) � t.

Suppose
φ(x, y, i) � t.

It is enough to show that

⊔{b | (a, b) ∈ Λ & a � φ(x, y, i) & b ↑ y}

� x � ⊔{b | (a, b) ∈ Λ & a � t & b ↑ y}.
But this is clear from the assumption that φ(x, y, i) � t.
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We now show that
⊔
i≥0

φ(x, y, i) � {t | t = x � ⊔{b | (a, b) ∈ Λ & a � t & b ↑ y}}.

This is done by demonstrating that
⊔

i≥0 φ(x, y, i) is one of the t’s, that is,

⊔
i≥0

φ(x, y, i) = x � ⊔{b | (a, b) ∈ Λ & a � ⊔
i≥0

φ(x, y, i) & b ↑ y}.

However, the above follows from the fact that a’s are isolated elements and

{φ(x, y, i) | i ≥ 0}
is an ω-increasing chain.

�

Theorem 6.1 suggests the use of fix-point theorems in domain theory (or lattice theory).
Recall that a function f : D → D is continuous if it is monotonic and it preserves least
upper bounds of ω increasing chains. The least fix point of any such continuous function
can be constructed by taking the least upper bound of the ω chain

⊥ � f(⊥) � f(f(⊥)) � · · ·
For a fixed domain D and default Λ, let

ξ(x, u, v) = x � ⊔{b | (a, b) ∈ Λ & a � u & b ↑ v},
η(x, v) = { t | t = ξ(x, t, v) }.

It is easy to check that for fixed x and v, ξ(x, u, v) is a continuous function in u. Therefore,
ξ(x, u, v) has a least fix point, such that ξ(x, l, v) = l, which is exactly what η(x, v) trying
to express. Indeed, the proof of Theorem 6.1 also confirms that

ξ(x, η(x, v), v) = η(x, v).

We have the following representation theorem, which builds on top of Scott’s represen-
tation theorem for information systems. The proof is straightforward, hence omitted.

Theorem 6.2 Every default information system determines an extension relation isomor-
phic to the abstract extension relation on the Scott domain corresponding to the underlying

information system, via the correspondence sending a default
X : Y

Y
to the pair (x, y) of com-

pact elements determined by (X, Y ); and conversely via the ‘inverse’ correspondence from
Scott domains to information systems.

Note that in this representation theorem a slightly more general form of defaults
X : Y

Y
is used, where Y is a finite set instead of a singleton. However, all previous results directly
generalize to this case.

31



6.2 Nonmonotonic entailment between open sets

Let (D,�) be a Scott domain. A subset U ⊆ D is said to be Scott open if (i) U is upward
closed: x ∈ U and x � y imply y ∈ U ; and (ii) for any ω-increasing chain

x0 � x1 � x2 � · · · ,
⊔

i xi ∈ U implies xk ∈ U for some k.
One checks readily that under this definition of ‘open’, that the collection of open subsets

of a Scott domain form a topological space. Such a space must contain ∅ and D, and be
closed under finite intersections and arbitrary unions. Furthermore, we can regard open
sets as being ‘properties’ of domain elements. The definition says that if an element has a
certain property, then we can discover that the property holds by testing a sequence of finite
elements which ‘converges’ to the given element. After a finite time, we find that the element
does indeed have the property. Such properties are sometimes called ‘affirmable’ [24].

It is straightforward to prove the following in any Scott domain D.

Theorem 6.3 Compactness in the Scott topology

1. For each finite element x ∈ D, the set ↑ x = {u | x � u} is open. We call it prime
open.

2. Every open set U is the union of the prime opens generated by the compact elements
of U .

3. Every compact open set X is a finite union of such prime opens. (Compact here means
the topological usage: every covering of X by open sets has a finite subcovering.)

A set Λ of defaults on a Scott domain (D,�) induces a nonmonotonic entailment relation
between open sets. For any open set U , let µU stands for the set of minimal elements of U .
Because U is an open set, elements in µU are isolated (compact). Suppose U, V are open
sets of D. With respect to Λ, define U |∼ V iff given any element x in µU , every extension y
of x is a member of V . This, of course, corresponds to the more concrete description given
in Section 1.3. Unsurprisingly, cautious monotony fails in this general setting: from U |∼ V
and U |∼ W , we cannot conclude U ∩ V |∼ W . This is because general open sets allow
disjunctions, in the form of unions of prime opens. Our representation theorems are really
about nonmonotonic entailment relations on prime opens. But because prime opens are
determined as the upward closure of compact elements, we can also regard this entailment
as a relation between compact elements. This is what we called the “abstract setting” for
entailment relations in the introductory section. We reserve the notation |∼ for entailment
between open sets, and use � as a relation on κ(D). (Think of this as the entailment relation
on compact opens.) If now Λ is a default set on D, we define the relation �Λ in analogy
with our default entailment relation: we let a �Λ b iff for every extension e of a, we have
b � e.

Our representation theorem for nonmonotonic systems is now the following.
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Theorem 6.4 For any nonmonotonic system (A,Con, |∼) we can find a Scott domain D, a
default set Λ, and an injective mapping θ : Con→ κ(D) satisfying the following: For any X
and Y in Con, X |∼ Y if and only if θ(X) �Λ θ(Y ).

This result is just a corollary of Theorem 4.2 and the representation of monotonic infor-
mation systems as Scott domains.

A more interesting kind of possible representation theorem is based on some observa-
tions about the relation �Λ. Observe that it satisfies the following laws (we suppress the
subscript):

• Reflexivity: a � a for all compact a;

• Right Weakening: if c is compact and c � a then a � c;

• Consistency: if a � b then a ↑ b;
• Right Conjunction: If F is a finite subset of κ(D) and a � b for all b ∈ F then
a �

⊔
F (note that in particular F is consistent);

• Cautious cut: If a � b and a � b � c then a � c.

Notice that � is somewhat like �: it could be called “default subsumption”. The
Cautious Cut rule is the substitute for transitivity. It would seem possible to start with a
Scott domain, and a consequence relation satisfying the above laws, and then represent it by
means of abstract defaults in an embedding domain. This topic, though, belongs to a later
paper, where we plan to discuss more issues in the abstract model theory of defaults.

6.3 Trace sets ensure cautious monotony

It has been mentioned in Section 5 that cautious monotony can be regained when extensions
are unique, in the model theoretic setting. The ‘model theoretic’ setting in a topology
corresponds to restricting the open sets to prime opens. However, the condition of ‘unique
extension’ is not very useful, because it is not realistic to verify. In this subsection we provide
a sufficient condition for default sets to determine unique extensions. This gives a concrete
and efficient way to verify cautious monotony by checking a property of the default set.

Our result is motivated from results in domain theory. It is well-known in domain theory
that a function f : D → D, where D is a Scott domain, is continuous iff for every finite
element b ∈ κ(D), b � f(x) implies b � f(a) for some a � x, with a finite. This means,
in a sense, that continuous functions are determined by pairs of finite elements. But what
kind of properties must a set of such pairs have to ensure that it correspond to a continuous
function?

We have

Theorem 6.5 A set { ( ai, bi ) | i ∈ I } ⊆ κ(D)× κ(D) determines a continuous function if
for all finite set J ⊆ I, { ai | i ∈ J } bounded above implies { bi | i ∈ J } is bounded above.
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The proof for Theorem 6.4 is quite routine, and we omit it. However, we point out that
the function determined by the set { ( ai, bi ) | i ∈ I } is the following:

f(x) =
⊔{bk | ak � x& k ∈ I}.

We call a set with the property mentioned in the previous theorem a trace set.

Definition 6.3 Let F ⊆ κ(D) × κ(D), where D is a Scott domain. F is a trace set if for
every finite subset G of F , the consistency of G’s first components implies the consistency
of G’s second components, i.e.,

π1G ↑⇒ π2G ↑ .
Of course, here πi’s are projections to the ith component, and X ↑ means that X is

bounded above in D.
Let’s define, for a function f : D → D, the set tr(f) to be a set of pairs (a, b) in

κ(D) × κ(D) such that b � f(a). Clearly tr(f) is a trace set, and we call it the trace set of
f . The set tr(f) has the following additional property of saturation:

[(a, b) ∈ tr(f) & a � a′ & b′ � b] ⇒ (a′, b′) ∈ tr(f).

However, when constructing a function from a trace set, the ‘derived’ pairs like (a′, b′) does
not contribute anything.

Observe that if we start with a continuous function f : D → D, construct its trace set
tr(f), and then derive a function from it via Theorem 6.4, we get back the same function.
On the other hand, if we start with a saturated trace set, derive a continuous function from
the set, and then find the trace set of the function, we get exactly the same trace set back.

We now come to the main theorem of this subsection.

Theorem 6.6 Let Λ be an abstract default set of a Scott domain D. Then extensions are
unique for Λ if

Λ ∪ Iκ(D)

is a trace set, where Iκ(D) = {(a, a) | a ∈ κ(D)}.
As a consequence of this theorem, one can easily check if the nonmonotonic consequence

induced by a default structure (A,Con,�,∆) satisfies cautious monotony. One simply aug-

ments ∆ with all trivial instances
{a} : a

a
, for a ∈ A, then check that for any finite set

X1 : a1

a1
,
X2 : a2

a2
, · · · , Xn : an

an

from ∆, if
X1 ∪X2 ∪ · · · ∪Xn ∈ Con,

then
{a1, a2, · · · , an} ∈ Con.
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Note that adding
{a} : a

a
into the default set seems quite innocent, but with the trace set

property, it produces some extra effect, as can be seen in the following proof.
Proof of Theorem 6.6. Suppose Λ has the property mentioned in Theorem 6.6.

Clearly Λ itself is a trace set and, moreover, the function determined by Λ∪ Iκ(D) is greater
than or equal to the identity function under the pointwise order.

Given any element x ∈ D, we have the following monotonic procedure for building an
extension, by taking advantage of the trace set property of Λ ∪ Iκ(D).

Let f denote the continuous function determined by Λ∪ Iκ(D). Clearly f is inflationary,
in the sense that f(t) � t for every t. There is a canonical way to construct a fix point for
such an inflationary function: just take the least upper bound of

x � f(x) � f(f(x)) � · · · .

Important to us is the fact that this fix point is an extension for x. Moreover, it can be
readily shown that it is indeed the unique extension of x.

�

Although Theorem 6.6 captures a large class of default sets which determine unique ex-
tensions, one wonders if the condition in Theorem 6.6 is also necessary for unique extensions.
The answer is, unfortunately, no. It is not hard to find finite examples which confirm this:
the reader is encouraged to find such examples.

To close the section, we briefly mention another condition for cautious monotony.

Theorem 6.7 For abstract defaults on Scott domains, the derived entailment has the cau-
tious monotony property if Λ satisfies the following condition:

[(a, b), (a′, b′) ∈ Λ & a ↑ a′] ⇒ [b = b′ or b �↑ b′].

Proof. We let �Λ be the relation on compact elements of D mentioned above, and we
drop the subscript Λ. Then the Cautious Monotony property is that whenever x � y and
x � z, we have that x � y � z. Suppose x � y and x � z. To show that (x � y) � z, let
xεt. Applying the assumed property for Λ, we can see that t = x� ⊔

B, where B is either a
singleton, or empty. If B is empty, then we have x � z, which implies x� y � z. If B = {b},
then we have x � b � z. Therefore, any extension for x � y is of the form x � y � b, which
dominates z. This proves (x � y) � z.

�

For lack of a better name, let’s call defaults with the property mentioned in the previous
theorem 0-1 defaults. It should be pointed out that for this case, cautious monotony holds
not because of unique extensions, but because there are so many incompatible extensions.

The following picture illustrates the relationships among different classes of default struc-
tures.

35



�

�

�

�

Trace set

Precondition free

Cautious monotony

Nonmonotonic entailment

0-1 defaults

��
��

��
��

��
��

�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
���

�
�

�
�

�
�

�
�

�
���

�

�

�

�

7 Conclusion

This paper views the issues involved in the study of nonmonotonic entailment in the light
of default model theory. It is an integral part of a more ambitious effort to reformulate
nonmonotonic reasoning. We have proved a representation theorem which characterizes the
properties of a nonmonotonic entailment relation derived from default rules and extensions.
This establishes a close connection between defaults and the abstract nonmonotonic entail-
ment relation. Although we have at least one convincing example to show that cautious
monotony may not hold in general, subclasses of defaults are identified for which cautious
monotony does hold, in the model theoretic setting. We then represent the abstract non-
monotonic entailment relation in a topological setting. This also makes it possible to apply
results in domain theory. Although Section 5 and Section 6 present several subclasses of de-
faults for which the induced nonmonotonic entailment relation satisfies cautious monotony,
the precise characterization of such defaults remains an open question. However, it is im-
portant to point out that properties of derived nonmonotonic entailment not only depend
on the kind of defaults used, but also depend on the procedure for building the extended
partial world. Although extension is one of the key model building method, there are other
possibilities. In [21], we introduce a construction called a dilation, motivated from the need
to ensure the existence of extended partial world for all reasonable defaults. Dilations are a
robust generalization of extensions, and exist for all semi-normal default structures.

What happens if, instead of using extensions, we use dilations in the passage from a
default structure to a nonmonotonic entailment relation? The answer is, quite unexpect-
edly, that these capture exactly the cumulative entailment relations: those satisfy cautious
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monotony. We have obtained representation results similar to those given in Section 4. This
somehow makes the ‘open question’ mentioned in the previous paragraph less urgent than
it might seem. Extensions seem to be fundamentally at odds with cautious monotony. Di-
lations, however, are in harmony with cumulative reasoning. We plan to report results on
dilation-related nonmonotonic entailment in a forthcoming paper.
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