
Research Report AI–1995–01

Toward a New Type of
Language for Electronic Commerce

Michael A. Covington

Artificial Intelligence Center
The University of Georgia

Athens, Georgia 30602–7415 U.S.A

Toward a New Type of Language for Electronic Commerce

Michael A. Covington
Artificial Intelligence Center

The University of Georgia

Athens, Georgia 30602–7415 U.S.A.

Abstract

This paper surveys practical issues in the design of a
formal language for business communication (FLBC) in
which transactions are put together by combining mean-
ingful elements, much as a programming language encodes
algorithms. Such a language is preferable to existing codes
such as ANSI X.12 and UN EDIFACT because of its much
greater versatility. The new language is tentatively named
LEC (Language for Electronic Commerce).

1 The problem

1.1 Why a new language?

Electronic data interchange (EDI) is the automated ex-
change between computers of the messages needed to carry
out business transactions. Examples include electronic
funds transfers, purchase orders, invoices, and various
kinds of administrative information. EDI users range from
corporations to armed forces to museums and libraries.

Present-day EDI messages look like Figure 1, and I want
to make them look like Figure 2. The difference is more
than cosmetic. Current EDI standards such as ANSI X.12
[1] and UN EDIFACT [2] are essentially data formats,
consisting merely of data fields arranged on a predefined
form. A new type of form is needed for each type of
message — so that in practice, there are hundreds — and if
a message doesn’t fit a predefined form, you can’t express
it at all. For example, Moore [3] found it impossible to use
EDI to tell a customer that, contrary to an earlier message,
a shipment had not actually gone out.

In this paper I want to sketch a new Language for Elec-
tronic Commerce (tentatively named LEC) in which mes-
sages are built by combining meaningful elements. 1 Essen-
tially, LEC will work like a programming language except
that instead of describing algorithms, it will describe busi-
ness transactions. Messages are not limited to predefined

1I want to thank Steve Kimbrough, Roggie Boone, and three anony-
mous referees for assistance and encouragement with this project. I am
solely responsible for errors that remain.

forms; instead, just as in programming languages, the ele-
ments of the language can be put together in any meaningful
way.

1.2 From invention to design

Languages of the type that I envision have been proto-
typed by Moore [3], Kimbrough and Lee [4], Dewitz and
Lee [5], and probably others. The development of such a
language was apparently first advocated by John McCarthy
[6].

In this paper I want to move from the problem of invent-
ing this new type of language to the problem of designing a
practical language of this type. In so doing, I will draw upon
applicable knowledge from natural language semantics and
pragmatics, programming language design, artificial intel-
ligence, and other fields. I will not be presenting a complete
design, merely an approach to a set of design problems. For
brevity I will sometimes use the name LEC to encompass
not only the language I hope to design, but also any other
languages that share its relevant properties.2

LEC breaks with traditional business data processing
technology in two ways. Like programming languages,
LEC uses recursively defined syntax rather than flat data
formats, thereby enabling a smaller language to do a big-
ger job. More importantly, LEC assumes that messages
will be processed by inference, not just decoding [3,7].
Whereas conventional EDI merely copies a block of data
from one computer into another, LEC encodes messages
that the receiving computer must figure out how to handle.
In this respect LEC is much more like human language.
When I talk to you, I am not copying my thoughts into
your mind; rather, I’m giving you a message that you can
decide to handle in any number of ways, depending on the
context, whether you trust me, and so forth. Likewise, LEC
is designed for computers that will decide, in various so-
phisticated ways, how to handle incoming messages, rather
than copying them blindly into internal databases.

The requisite technology for implementing inference,
logic programming, is now twenty years old, and adequate

2The generic term, FLBC (formal language for business communica-
tion), is also the name of a language designed by Moore [3].

1

ST*840*159

BQT*00*Q47391*820430

N1*SE*X, Inc.

N1*BY*Y Co.

P01*1*30000*EA*0.42*PN*747355*PD*Circuit Network

SCH*10000*EQ****002*820604

SCH*20000*EA****002*820709

CCT*1*30000

SE*9*159

Figure 1: Example of an EDI transaction in ANSI X.12 format, requesting a price quote on 30,000 circuit networks with
specified delivery dates [15].

lec(
dialect(1.25,full),
from="Y Co.",
to="X, Inc.",
content:

we request:
you inform us:

price of:
item 1 := (part no:747355, description:"Circuit Network"),
action=
deliver(from=you, to=us, item=item 1, qty=20000, date≤82/06/04) &
deliver(from=you, to=us, item=item 1, qty=20000, date≤82/07/09)

)

Figure 2: What the new type of language may look like. Semantic and pragmatic analysis is needed before this language
can actually be designed in workable form.

computer power is now available in machines as small as
4×6 inches (10×15 cm).3 Accordingly, this aspect of LEC
will be an application of known artificial intelligence tech-
niques.

1.3 How communication can fail

The central role of inference implies that LEC will have
a possible failure mode that conventional EDI does not. If
your software is designed to handle a particular conven-
tional EDI form, you can be confident that it will always
succeed in doing so. The only reasons an incoming mes-
sage might be un-handleable are that it violates the syntax
of the form, or else the data within it is either erroneous or
malformed. Valid messages without erroneous content will
always be handled correctly.

But with a language that requires inference, it is possi-
ble to receive a perfectly well-formed message containing a
perfectly reasonable request which you nonetheless cannot

3A 4×6× 1
2 -inch 80486 PC was exhibited at the 1995 Embedded Sys-

tems Conference in Atlanta. This is more than enough computer power
for the purpose.

handle, not because you lack the ability to comply, but be-
cause you can’t figure out what to do with it — the requisite
inferences are not within your computational ability, or you
lack some background knowledge that the sender assumed
you had. This is a very familiar scenario in human-to-
human communication. How it will affect EDI remains
to be worked out. Obviously, one of the desiderata for an
inferential message handler is the ability to troubleshoot
such situations automatically and reply with appropriate
requests for clarification.

Suspicions about this failure mode probably account for
some of the skepticism that is occasionally expressed about
new-style EDI languages. But on closer examination, this
failure mode is not as pernicious as it sounds, because, in
general, the messages that fail this way are messages that
could never even have been attempted with conventional
EDI. At worst, you are no worse off than with the old
technology. Almost all of the time you are better off.

1.4 Design process

To design LEC we need not only an adequate theory,
but also an empirical study of the communicative power

2

needed for electronic commerce. Here we can draw on
recent developments in theoretical linguistics, especially
formal semantics and formal pragmatics. Linguists now
use set-theoretic techniques to specify, with mathematical
precision, the relations between utterances, their meanings,
and the situations in which they are used. Naturally, not
all of human language has been analyzed this way, but we
don’t need all of it; we only need the subset that is essential
for commercial transactions.

Some important work along these lines has already been
done [3,4,5,8,9,10]. In the remainder of this paper I shall
sketch some applicable concepts from linguistics and com-
puter science and make concrete proposals for the design
of a new language.

2 Language and Communication

Figure 3 shows a model of how the parts of any language
fit together:

• Semantics relates the message to the things it can talk
about (its logic and ontology);

• Pragmatics relates the message to the communicative
situation;

• Syntax specifies how the parts of the message fit to-
gether.

This model is an adaptation of the standard five-level model
of human language used by linguists [11,12], with physical
encoding and transport taking the place of morphology and
phonology. The three-way distinction between syntax, se-
mantics, and pragmatics goes back to a 1938 monograph by
C. W. Morris [13], but the pragmatics of human language,
in particular, is a new field, having developed in the last 30
years or less.

3 Logic and ontology

Ontology is what you can talk about or think about, and
logic is how you describe and reason about the properties
and relationships of things. The design of LEC must reflect
the ontology and logic of business transactions.

3.1 Entities and relationships

A striking characteristic of X.12 and EDIFACT is their
bloated ontology. When the same entity or type of en-
tity turns up in more than one place, the sameness is not
recognized. To take an extreme case, EDIFACT has no
concept of “number” — instead, there are 3–digit numeric
fields in some places, 4-digit numeric fields in others, 10-
digit numbers somewhere else, and so on. The problem,

Physical encoding
and transport

Syntax

�
�

�

�
�

�

Semantics Pragmatics

Logic
and ontology

Communicative
situation

Figure 3: A model of language and communication.

of course, is that EDIFACT does not distinguish concepts
from their physical representations. In essence, EDIFACT
is a language for depositing character strings into particular
places on a remote computer, rather than a language for
exchanging knowledge. X.12 is largely the same.

The ontology of LEC will be much leaner, but it would
be premature to try to enumerate everything it will contain.
Minimally, LEC will have to refer to numbers; quantities
expressed in specific units (such as length,weight, currency,
etc.); individual participants in a transaction; mechandise;
and relations such as ownership, possession, and trans-
portation. It is likely that the basic concepts of business
transactions will be arranged in an ‘is a’ hierarchy with
default inheritance of properties.

3.2 Facts and presumed facts

One obvious difference between practical knowledge
and pure classical logic is that practical knowledge can be
overruled. You can get information that says X and then,
later on, get better information that says not-X . When this
happens, you don’t have a contradiction; you’ve merely
expanded your knowledge.

This is known as defeasible or non-monotonic reason-

3

ing. Defeasible inference by computer is now a well es-
tablished technology [14] and will be incorporated into the
LEC inference engine. Defeasible reasoning in business
communications has been explored in depth by Kimbrough
and Moore [15] among others.

3.3 Extensions to classical logic

LEC and the computer systems that process it also need
three familiar extensions to classical logic. First, in busi-
ness you often have to talk and reason about what is pos-
sible, not merely what is the case today. That is known as
MODAL LOGIC.

Second, you have to reason about time, and facts that
are true at different times, using TEMPORAL LOGIC.

Third, you have to reason about obligations (both your
own and other people’s), using DEONTIC LOGIC. The ap-
plication of deontic logic to commerce is already an active
research area [15,16]. Kimbrough and Moore [15] point
out that in real life, all obligations are defeasible; no mat-
ter what your obligations seem to be, there is always the
possibility of finding out that they are really something else.

Again, computer inference techniques for these exten-
sions to classical logic are available [17,18,19,20,21]. Full
implementations of modal, temporal, and deontic logic will
not be needed because LEC is not aiming for the full ex-
pressive power of human language, only a minimum level
sufficient for business transactions. Accordingly, external
limitations can be imposed to make automated reasoning
more practical. Since so much research is being done on
these topics by others, I shall not pursue them here.

4 Semantics and vocabulary

The semantics of LEC will be based on first-order logic,
with the extensions already mentioned.

A major design issue will be the atomization of meaning
[22] — that is, whether to break meanings down into smaller
units, and if so, how. For example, to sell is to trade for
money; to trade is to make a pair of transfers of possession in
opposite directions each cancelling the debt created by the
other; and so on. The practical question is which concepts
should be treated as atomic, and which should be broken
down further.

This is a recurrent issue in the design of programming
languages; more generally it might be called SYSTEMATIC-
ITY VERSUS CONVENIENCE or CHOOSING ELEMENTS OF THE

RIGHT SIZE. Consider for example the percent key on your
pocket calculator. Taking a percentage is not an elemen-
tary mathematical operation, but it comes up so often in
business arithmetic that it needs a button of its own. A cal-
culator designed for theoretical elegance would not have a

percent key (nor, perhaps a square root key) and would not
be as handy in practical work.

Similarly, the vocabulary of LEC needs to provide for
concise expression of the concepts that come up regularly in
commerce, whether or not they are equivalent to combina-
tions of things already provided for. On the other hand, the
language should be systematic enough that programmers
can remember how to use it and computer implementations
are reasonably clean and simple. The tension between the-
oretical elegance and practical usefuless will always be felt.

5 Pragmatics

Pragmatics is the relation between a message and the
situation in which it is uttered. In LEC, pragmatics com-
prises speech acts, conversational maxims, and a number
of more mundane aspects of message handling.

5.1 Speech acts

Austin [23], Searle [24], and others have identified vari-
ous ILLOCUTIONARY ACTS that one can perform by uttering
a message. On one scheme, illocutions in natural langauge
fall into five major types, assertions, promises, instructions,
declarations (e.g., christening a ship, defining a new term),
and expressions of feeling.

Not all of these occur in commerce. Further, some rela-
tively specialized illocutions, such as offers, are so common
that they should probably be treated as basic types. A basic
set for electronic commerce might comprise the following:

• Informing (giving information)

• Confirming information already given

• Inquiring (requesting information)

• Requesting or commanding action

• Promising (obligating oneself)

• Making an offer

• Accepting an offer

• Defining a new term

The first seven of these were prominent in Moore’s empir-
ical study of EDI speech acts [10]. The last one is a hook
for extending the language. On the application of speech
act theory to commerce, see also [25].

4

5.2 Conversational maxims

In a seminal paper, Grice [26] pointed out that in ordi-
nary conversation, people abide by a number of maxims
such as “Be relevant,” “Be concise,” and “Be truthful (not
misleading).” To deduce what an utterance means, we rou-
tinely presume that these maxims are being followed.

Grice’s maxims may be the key to an important part of
the inferential process for handling LEC messages. Fortu-
nately, commerce is much less subtle than natural language
in general, and in commerce there is a strong tendency to
make messages explicit. One does not have to deal with in-
sinuations, rhetorical understatements, metonymy, or other
figures of speech. The prominent inferential tasks have
rather to do with associating the message with its sender
and the relevant background knowledge. The overriding
conversational maxim in commerce may well be some-
thing like, “Treat this message like other messages of the
same type unless there is a demonstrable reason not to do
so.”

At least I hope it will remain that simple. Kimbrough
(personal communication) has pointed out the possibility
of an artifically intelligent EDI system “learning” to exag-
gerate or lie in order to get results. The system on the other
end would then learn to discount its assertions. The process
could escalate until there was a complete failure of com-
munication. (We see this happen between humans.) We
would want our inferential systems to detect such situations
and head them off somehow.

6 Syntax

6.1 Does syntax matter?

One could argue that the syntax of LEC is almost a moot
point; any ad hoc representation that has the right semantics
and pragmatics will do. After all, LEC is for computer-to-
computer communication, and its readability or elegance
as judged by human eyes is unimportant.

That, however, is not true. Human beings have to im-
plement the language even if they will not be the ultimate
senders or recipients of messages. The history of pro-
gramming languages shows that seemingly petty decisions
about syntax and physical encoding can have a large ef-
fect on the success or failure of a language [27]. For
example, the designers of ALGOL 60 failed to specify
the details of physical encoding, and as a result, ALGOL
programs were never portable [28]. Fortran and COBOL,
with their well-specified physical representations, carried
the day even though ALGOL was a more sophisticated lan-
guage. Again, one of the factors that confined PL/I to IBM
hardware was its reliance on the EBCDIC character set.

And the main reason most of us have never used APL is its
insistence on a character set all its own.

On the other hand, the success of PostScript [29] as
a computer-to-computer language is attributable to many
good design decisions, among them free-form layout, the
identification of the language in the first four characters of
every program, and the ability to mix MS-DOS and UNIX
end-of-line marks.

6.2 Prolog base

Following Moore [3] and others, I adopt Prolog as the
basis for LEC. Prolog is the only major computer language
that is designed to represent inferential knowledge as well
as algorithms. Unlike conventional languages, Prolog has
a written representation for every value of every data type. 4

The syntax of LEC will be a subset of that of ISO Prolog
[30]. Prolog, in turn, is based on C. Thus, familiar tokeniza-
tion and parsing algorithms can be used. Because Prolog
can be used as its own metalanguage, implementation of
LEC in Prolog will be especially easy.5

For ease of language identification, each LEC message
will be required to begin with its principal functor (probably
lec) with no comments or white space preceding.

LEC messages will be text, written in the 128-character
ASCII character set. Conversion to or from other character
sets is left to the transport protocol.

Why not use a more concise binary encoding rather than
text? For two reasons. Text is readable and transportable;
binary codes may not be. Second, compression of data
into concise binary form can be carried out by the transport
protocol. In any case, industry experience with another
machine-to-machine language — PostScript graphics —
has shown that massive prolixity is tolerable. PostScript
files often start with many kilobytes of auxiliary definitions
that are never used. Whether LEC will be subjected to
comparable abuse remains to be seen.

Like Prolog, LEC will use free layout, and comments
will be permitted. Unlike PostScript, LEC will not fall
into the trap of redefining some comments to be significant
elements as the language evolves. Instead, an open-ended
message element (perhaps called tag) will be provided for
implementing unforeseen extensions.

A standard printed representation for LEC messages will
be devised so that a message transmitted with minimal or

4With a few arcane exceptions, of course, such as structures that are
instantiated to structures that contain them.

5More than one person has suggested that I use SGML or one of its
derivatives, such as HTML, instead of Prolog. This would not be advan-
tageous. SGML is a language for describing printed text, not exchanging
knowledge, and it does not have the right syntactic units to encode the
ontology of LEC. (Instead of numbers, structures, and lists, everything is
just character strings.) Moreover, SGML is verbose; instead of msg(abc)
one would have to write <MSG> abc </MSG>. It would of course be trivial
to translate Prolog-based LEC into a semantically equivalent notational
variant based on SGML.

5

nonstandard use of whitespace can be printed automatically
in readable form.

6.3 Some fine points

Prolog distinguishes between atomic symbols and char-
acter strings. Accordingly, LEC will use Prolog atoms for
meaningful words, and character strings for free text and for
names, addresses, and similar material that is merely repro-
duced without being interpreted. Because double quoted
strings are byte strings, they can contain any type of data.

Many of the predicates used in commerce have multiple
arguments, some of which are optional or unknown. For
example, the act of selling might include a seller, a buyer, a
thing sold, a price, and a date and time, but it is common to
leave some of these unspecified. Instead of standard Prolog
notations such as

sell(you,us,"Circuit Network",
(85,usdollars),_,_)

LEC will use structures with labeled arguments, such as

sell(from=you,
to=us,
item="Circuit network",
price=(87.5,usdollars),
date=...

)

or even discontinuous predicates as in:

you sell us "Circuit Network"
for (87.5,usdollars)

Here A sell B C for D is a template that matches the
predicate-argument structure.

To eliminate the unreadable pileup of parentheses that
occurs at the end of a formula such as

request(we,inform(you,us,whether(
possible(sell(you,us,...))))))

LEC will modify the Prolog operator table to use colons in a
special way. A colon will indicate that everything following
it is a single argument, until the end of the expression or a
higher-level closing parenthesis is found. Thus, instead of
a(b(c(d))) one can write (a:b:c:d).

Using these enhancements, the expression at the begin-
ning of this section can be written

we request:
you inform us whether:
possible:

you sell us ...

greatly improving readability.

7 Transport and Message Management

By “transport” I mean the mechanism outside the lan-
guage that is responsible for getting messages from place
to place. Transport includes communication protocols
(SMTP, FTP, etc.), character set conversion, reformatting
to comply with line length limits, and the like.

There is some duplication of function between the trans-
port layer and the pragmatic information encoded in the
message itself. For example, the sender and the addressee
are identified in both places. But this duplication of func-
tion is not undesirable. First, deliberate discrepancies may
be useful. For example, a message may need to be ad-
dressed (internally) to any of several different processes or
functions at the same (transport-layer) email address. Sec-
ond, by checking for unexplainable discrepancies, one can
detect errors. The failures of the transport layer will not
compromise the contents of a message.

Transport need not be trivial and mechanical. Moore
and Kimbrough [31] point out the advantages of using
a MESSAGE MANAGEMENT SYSTEM to automate message-
handling tasks that would otherwise require human inter-
vention. LEC is an ideal language for such a system because
each LEC message can be understood, partly or by com-
pletely, by each message management system that it passes
through.

8 What next?

8.1 The LEC project

To actually design and implement LEC it will be nec-
essary to work through a corpus of actual business trans-
actions, identifying the communicative power needed and
designing a language equal to the task. Fortunately, much
of the data-gathering has been done by the designers of
existing EDI standards. EDIFACT and X.12 are, after all,
nothing but corpora of transaction types. The real work
now is to analyze the semantics and pragmatics of the EDI-
FACT and X.12 transactions, just as the inventors of Fortran
and COBOL studied existing assembly language computer
programs.6

8.2 Applications of LEC

The most obvious use for LEC is, of course, as a more
versatile substitute for X.12, EDIFACT, and similar data
languages. As such, it has the same advantages, including
the ability to automate routine commerce and the ability
to do business without having to know English or another

6The University of Georgia Research Foundation is seeking funding
for this work.

6

major world language (it’s no accident that EDIFACT is
popular in Hungary and Bulgaria).

Because of its versatility, LEC also lends itself to auto-
matic translation into and out of human languages. That
is, it will be quite feasible to generate English, French, or
Hungarian translations of LEC messages. Further, because
LEC is logic-based, it will be practical to go the other way,
writing software that accepts human-language input (about
routine commercial matters, of course, not full unrestricted
English) and converts it into LEC messages. Like human
language, and unlike X.12 or EDIFACT, LEC messages
are constructed by putting meaningful elements together.
Thus, one does not have to interpret the entire natural lan-
guage input and then go searching for a form that fits it;
rather, one has only to map the meaningful elements of one
language onto those of another.

8.3 Criteria of success

LEC has two design goals: to substitute for traditional
EDI formats, and to deliver functionality that traditional
EDI cannot. Testing of prototypes will focus on these
goals. Types of software that I envision building in order
to test LEC include:

• Translators to convert a subset of X.12 into LEC;

• Translators to convert LEC into X.12,as far as possible
(a much harder problem because LEC can say things
that X.12 cannot);

• Automatic message handlers and transaction proces-
sors to accept and respond to LEC messages;

• Translators to translate LEC messages into (approxi-
mations of) English and other human languages.

Eventually, of course, LEC should be tested in a real or
simulated business situation analogous to the bicycle shop
of Kimbrough and Moore [3].

References

[1] Electronic data interchange: X12 standards, draft
version 3 release 4. New York: American National
Standards Institute, 1993.

[2] Berge, John. The EDIFACT standards. Manchester
(England): NCC Blackwell.

[3] Moore, Scott A. Saying and doing: uses of a formal
language in the conduct of business. Dissertation,
Ph.D., University of Pennsylvania, 1993.

[4] Kimbrough, Steven O., and Lee, Ronald M. On illo-
cutionary logic as a telecommunications language.

Proceedings, Seventh International Conference on
Information Systems (1986), 15–26.

[5] Dewitz, Sandra K., and Lee, Ronald M. Legal pro-
cedures as formal conversations: contracting on a
performative network. Proceedings, Tenth Interna-
tional Conference on Information Systems (1989),
53–65.

[6] McCarthy, John. The common business communi-
cation language. Albert Endres and Jürgen Reetz,
eds., Textverarbeitung und Bürosysteme. Munich:
Oldenbourg, 1982.

[7] Bach, Kent, and Harnish, Robert M. Linguistic com-
munication and speech acts. Cambridge, Mass.:
MIT Press, 1979.

[8] Kimbrough, Steven O., and Moore, Scott A. On auto-
mated message processing in electronic commerce:
speech act theory and expressive power. Ms., Uni-
versity of Pennsylvania, 1994.

[9] Moore, Scott A. A communication framework for ap-
plications. Proceedings, Hawaii International Con-
ference on System Sciences (1995).

[10] Moore, Scott A. Testing speech act theory and its ap-
plicability to EDI and other computer-processable
messages. Working paper, U. of Michigan, 1995.

[11] Allen, James. Natural language understanding.
Redwood City, Calif.: Benjamin/Cummings, 1995.

[12] Covington, Michael A. Natural language processing
for Prolog programmers. Englewood Cliffs, N.J.:
Prentice-Hall, 1994.

[13] Morris, C. W. Foundations of the theory of signs.
(International encyclopedia of unified science, vol.
1, no. 2.) Chicago: University of Chicago Press,
1938.

[14] Ginsburg, Matthew L., ed. Readings in nonmono-
tonic reasoning. Los Altos, Calif.: Kaufmann,
1987.

[15] Kimbrough, Steven O., and Moore, Scott A. On
obligation, time, and defeasibility in systems for
electronic commerce. Proceedings, Hawaii Inter-
national Conference on System Sciences (1993),
vol. 3, 493–502.

[16] Lee, Ronald M. Bureaucracies as deontic systems.
ACM Transactions on Office Information Systems 6
(1988) 87–108.

[17] Gabbay, Dov M.; Hogger, C. J.; and Robinson, J.
A., eds. Handbook of logic in artificial intelligence
and logic programming. 3 vols. Oxford: Oxford
University Press, 1993-94.

7

[18] Lewis, Lundy Michael The ontology, syntax, and
computability of deontic logic. Dissertation, Ph.D.,
University of Georgia, 1986.

[19] Meyer, J. J., and Wieringa, R. J., eds. Deontic logic
in computer science. New York: Wiley, 1993.

[20] Raskin, J. F.; Tan, Y. H.; and van der Torre, L. W.
N. Modeling deontic states in Petri nets. Report
WP–1994–12–01, EURIDIS, Erasmus University,
Rotterdam.

[21] Bons, R. W. H.; Lee, R. M.; Wagenaar, R. W.; and
Wrigley, C. D. Modeling interorganizational trade
procedures using documentary Petri nets. Report
RP–1994–10–01, EURIDIS, Erasmus University,
Rotterdam.

[22] Bolinger, Dwight. The atomization of meaning.
Language 45 (1965) 555–573.

[23] Austin, J. L. How to do things with words. Oxford:
Clarendon Press, 1962.

[24] Searle, J. R. Speech acts. Cambridge: Cambridge
University Press, 1969.

[25] Auramäki, Esa; Lehtinen, Erkki; and Lyytinen,
Lalle. A speech-act-based office modeling ap-

proach. ACM Transactions on Office Information
Systems 6 (1988) 126–152.

[26] Grice, H. Paul. Logic and conversation. Peter Cole
and Jerry L. Morgan, eds., Syntax and semantics,
vol. 3: Speech acts, 41–58. New York: Academic
Press, 1975.

[27] Wexelblat, Richard L., ed. History of programming
languages. New York: Academic Press, 1981.

[28] Bemer, R. W. A politico-social history of Algol.
Mark I. Halpern et al., eds., Annual review in au-
tomatic programming 5, 151–237. Oxford: Perga-
mon, 1969.

[29] Reid, Glenn C. PostScript language program design.
Reading, Mass.: Addison-Wesley, 1988.

[30] Scowen, Roger, ed. Prolog — part 1, general core.
ISO/IEC 13211–1:1995. Geneva: International Or-
ganization for Standardization.

[31] Moore, Scott A., and Kimbrough, Steven O. Mes-
sage management systems at work: prototypes for
business communication. Journal of Organiza-
tional Computing 5.2 (1995) 83–100.

8

