
A Spanish Stemming Algorithm

Implementation in PROLOG and C#

Dennis D. Perez Barrenechea
Artificial Intelligence Center - The University of Georgia

Athens, Georgia 30602-7415 U.S.A.
http://www.ai.uga.edu/

October, 2006

Abstract

This paper presents two implementations of a Spanish stemming
algorithm in Prolog and C#. The basis for the implementations is a
Porter-like algorithm published by the Snowball Project. Some ad-
ditions to the original algorithm are proposed and included in the
programs, allowing them to identify a larger number of words and
suffixes.

1 Introduction

A stemming algorithm is a technique used in Information Retrieval (IR)
and some other applications of Natural Language Processing (NLP), which
removes suffixes from a word in order to obtain a stem or base form which
could be easily matched in databases or documents (Jurafsky 2000). Its use
is based on the premise that two words with the same stem have very close
semantic content. The several possible variations of the derivatives, inflected
forms, gender and number changes, and other phenomena, make the grouping

1



of all the variants under a common stem advisable. Applications that do not
take these effects into account may end up with difficulties when comparing
queries and documents, or dispersal effects in word frequency calculations.

2 The Improved Snowball Spanish Stemming

Algorithm

This work is based on the Spanish stemming algorithm published by the
Snowball project (Snowball 1999). The algorithm starts extracting sections
from a word and labeling them as RV and R2. RV is defined as the region of
the word that starts after the third letter, or null if not exists. To define R2,
R1 needs to be defined. R1 is the region after the first non-vowel following
a vowel, or null if not exists. For example, in the word precios, the first
non-vowel following a vowel would be the c. Therefore, R1 would be ios.
Similarly, in the word belĺısimo, the first non-vowel following a vowel is the
first l, therefore R1 would be given by ĺısimo.

R2, on the other hand, is a region that starts after the first non-vowel follow-
ing a vowel in R1, or null if none exists. In the first example, R2 would be
null, since there’s no other letter following the s, the first non-vowel following
a vowel in R1. In the second example, R2 would be given by imo.

The first step in the algorithm per se, called step 0, is the removal of the
attached pronouns. The rule is to remove the longest of the following in RV :

me, se, sela, selo, selas, selos, la, le, lo, las, les, los, nos

They will be removed only if the come after

iéndo, ándo, ár, ér, ı́r, iendo, ando, ar, er, ir, [u]yendo

Note that the u in uyendo could be outside RV. Finally, acute accents must
be removed.

The next step (Step 1 ) removes any standard suffixes from R2. The list of
suffixes considered as standard by the algorithm is given below:

2



anza, anzas, ico, ica, icos, icas, ismo, ismos, able, ables, ible, ibles,
ista, istas, oso, osa, osos, osas, amiento, amientos, imiento, imientos

icadora, icador, icación, icadoras, icadores, icaciones, icante, icantes,
icancia, icancias

adora, ador, ación, adoras, adores, aciones, ante, antes, ancia, ancias

loǵıa, loǵıas

ución, uciones

encia, encias

ativamente, ivamente, osamente, icamente, adamente, amente

antemente, ablemente, iblemente, mente

abilidad, abilidades, icidad, icidades, ividad, ividades, idad, idades

ativa, ativo, ativas, ativos, iva, ivo, ivas, ivos

If loǵıa or loǵıas is removed, it must be replaced by log. Similarly, if ución

or uciones is removed, it must be replaced by u. Finally, if encia or encias

is removed, it must be replaced by ente.

Step 2 is only performed if Step 1 performed no modifications, over RV. The
step is divided in two: Step 2a would remove verb suffixes beginning with
y, and Step 2b other verbs suffixes. Step 2b is only done if Step2a failed to
remove a suffix.

On Step2a, the algorithm looks in RV for the longest of the following:

ya, ye, yan, yen, yeron, yendo, yo, yó, yas, yes, yais, yamos

Any of these is only removed if is preceded by a u that is not needed to be
in RV.

As was said before, Step 2b is only performed if Step 2a failed to remove a
suffix. The longest of these suffixes must be removed from RV :

en, es, éis, emos, guen, gues, guéis, guemos

3



aŕıan, arias, arán, arás, aŕıais, aria, aréis, aŕıamos, aremos, ará, aré,
eŕıan, eŕıas, erán, eras, eŕıais, eŕıa, eréis, eŕıamos, eremos, erá, eré,
iŕıan, iŕıas, irán, irás, iŕıais, iŕıa, iréis, iŕıamos, iremos, irá, iré, aba,
ada, ida, ı́a, ara, iera, ad, ed, id, ase, iese, aste, iste, an, aban, ı́an,
aran, ieran, asen, iesen, aron, ieron, ado, ido, ando, iendo, ió, ar, er,
ir, as, abas, adas, idas, ı́as, aras, ieras, ases, ieses, ı́s, áis, abais, ı́ais,
arias, ierais, aseis, ieseis, asteis, isteis, ados, idos, amos, ábamos,
ı́amos, imos, áramos, iéramos, iésemos, ásemos

Any of guen, gues, guéis or guemos must be replaced by g, and both the g

and u do not need to be in RV.

Finally, Step 3 must be performed always. It removes any remaining suffix
(residual). This step search for the longest of the following:

os, a, o, á, ı́, ó, e, é, ue, ué

In the case of ue and ué, they can only be removed if preceded by a g, which
could or not be in RV.

Once all steps have been completed, all acute accents must be removed from
the remaining characters. This is the stem that the algorithm returns as
output.

After careful revision of the features of this algorithm, two improvements were
quickly identified and added to the implementation. The first included new
instances of attached pronouns, in Step 0. The added suffixes are presented
below:

te, telo, melo, telos, melos, tela, mela, telas, melas

Variations like, for example, the verb tomar (to drink): tomarmelo, tomarme-

los, tomarmelas, tomartelas, were not being included in the original algo-
rithm.

The second improvement had to deal with diminutives and superlatives, suf-
fixes highly used in colloquial speaking (and writing) in Spanish. Even

4



though they are not standard for the different Spanish-speaking countries
(some countries may use -ito as diminutive, while others -ico or -illo), they
are extensively used. The list of the diminutives and superlatives included
in the implementation are given below:

ito, ita, azo, aza, lin, lina, in, ina, on, ona, itillo, itilla, cillo, cilla,
illo, illa, itico, itica, ico, ica, ote, ota

The step was included as Step 4 over the original algorithm. Note these
modifiers only affect to adjective words in Spanish. They should be removed
only if included in RV.

3 Implementation in Prolog

Two predicates are available on the Prolog implementation. The first one of
them,

stemWord(+Word, -Stem)

will allow the user to stem a word in Spanish. The other predicate,

stemFile(+InputFilename, +OutputFilename)

will load a text file whose name is specified as the first parameter and will
stem every word it finds inside it, storing the resulting stems into the file
specified in the output filename (second parameter).

For example, stemWord("casamiento",X). will return X as "cas". In the
case of stemming a whole file, the new file (in either a directory specified in
the parameter or the default directory) will be generated. For example, for
stemming the content of sample1.txt into a file named sample1.out:

stemFile("C:\\TMP\\sample1.txt","C:\\TMP\\sample1.out").

5



The content of sample1.txt is:

Perú, páıs mágico y milenario, posee una diversidad y riqueza poco
comunes en el mundo y ofrece al visitante infinitas alternativas y la
posibilidad de vivir una experiencia única: Historia, cultura, natu-
raleza, aventura y mucho más en un solo destino.

The content of the stemmed text file, sample1.out is:

Peru pais mag y milenari pose un divers y riquez poc comun en el
mund y ofrec al visit infinit altern y la posibil de viv un experienci un
Histori cultur naturalez aventur y much mas en un sol destin

Each word is given in a different line.

Performance has always been considered through the development of this
solution in Prolog. By design, Prolog is optimized to work with lists and
unification 1 . The use of this powerful tool plus some other well-known
optimization techniques like tail recursion 2 assures that the program will
make a good use of the memory resources as well as improve response time.

Since performance is an important goal in the Prolog solution, the algorithm
is optimized to work fast when dealing with large texts. For this objective to
be achieved, the stemFile predicate ”tokenizes while it stems”. What hap-
pens is that the program reads every character on the input file and stores
them on a current word stack, until it finds an end of word character (i.e.
a blank space). This stack is a list with the word in inverse order. Since
what the stemmer really does is to remove suffixes from words, this setting is
perfect for trying unification and to remove an existing suffix. Therefore, at
this point the algorithm calls the stemWordInv(+WordInv, -StemInv) pred-
icate, which receives as first parameter a list of characters, an inverted word;
and returns as second parameter a list of character, which is the inverted
stem.

1The mechanism of binding the contents of variables; Can be viewed as a kind of
one-time assignment.

2In computer science, tail recursion (or tail-end recursion) is a special case of recursion
where the recursive call is the last thing that happens in a function.

6



Some of the predicates do not use tail recursion to optimize the code. An
example is getR2(+Word, -R2), which call itself recursively until no other
letter is present and when returning from the recursive call, counts the num-
ber of non-vowels after a vowel to find R2, as the definition of this part of
the word is made.

For the inverse word analysis to work, the other predicates which detail
the suffixes to be removed from the original word are encoded in inverse
form, to make efficient use of unification and the lists. Being Step 0 the
only one from all steps were any pronoun suffix may be removed if any
previous combination of characters exists previous to the presence of this
suffix in the word, both the predicates pronoun(+WordInv, -WordTmp) and
prepronoun(+WordTmp, -StemInv) combine to make any removal from the
original word.

Step 1 recieves R2 to check for a standard suffix to be removed. To achieve
this goal, the standard_suffix(?Suffix, ?ReplacingChars) predicate is
used, which not only details the sequence of characters to remove (the first
parameter), but also the sequence of characters that may replace this removed
ones. Note that no character may be given as a parameter here.

Step 2 is similar to Step 1, but in this case the algorithm uses RV. In this
case, the verb_suffix_b(?VerbSuffix, ?ReplacingChars) predicate de-
tails both the sequence to search and remove, and the replacing sequence;
And the verb_suffix(?VerbSuffix) predicate allows to search for the verb
suffixes detailed in Step 2a.

Finally, with the residual_suffix(?Suffix , ?Replace) predicate, both
Step 3 and Step 4 are implemented. This predicate contains the suffixes
detailed in both the residual suffixes step and the diminutives/superlatives
step, our additions to the original Snowball algorithm.

The stemWord predicate only inverts the word and calls the stemWordInv
predicate, to finally invert the resulting inverted stem.

7



4 Implementation in C#

The C# implementation contains two files: The SpanishStemmer class,
which provides static methods for stemming a word in Spanish, and can
be added to any application in .Net. A console application is also provided,
which allows the user to stem any number of text files by generating the
corresponding stemmed texts all at once.

Even though filenames with paths can be used, it is recommended to place
all text files in the same directory than SpanishStemmerApp.exe. All output
files will be generated in the same path than the original file and with the
same name, but with extension .out.

To run the application, execute the windows console (cmd.exe), and run
SpanishStemmerApp.exe. A list of the files to be stemmed must be given as
a parameter. For example:

C:\SpanishStemmer\SpanishStemmerApp.exe Sample1.txt Sample2.txt

will execute the stemming algorithm on Sample1.txt and Sample2.txt files,
generating the Sample1.out and Sample2.out output files in the original
directory.

This implementation, as opposed to the one in Prolog, resembles as much
as possible the original algorithm. Minimal performance-related changes have
been applied to it, to maintain the readability of the code. The SpanishStemmer
class provides a static function, stemWord(), which receives the original word
as input and returns the stem of the word.

5 References

Jurafsky, Daniel and Martin, James (2000) Speech and Language Processing,
Prentice-Hall. pp. 82-83.

Snowball Project (1999) A Spanish Stemming Algorithm. Available online at
http://snowball.tartarus.org/algorithms/spanish/stemmer.html.

8


