
Accessing WordNet from Prolog

Sarah Witzig
Artificial Intelligence Center
The University of Georgia

http://www.ai.uga.edu
sarah witzig@hotmail.com

2003 May 8

Abstract

WordNet is a lexical reference system, developed by the university of Princeton.
This paper gives a detailed documentation of the Prolog database of WordNet and
predicates to interface it. 1

1 Introduction

WordNet is a lexical reference system, developed by the university of Princeton. WordNet
1.7.1 is the most recently available version of the software. It can be downloaded from the
Internet. Its design makes the use of dictionaries more convenient. You do not have to
spend a lot of time going through the alphabetical list of words to find information about an
expression. With WordNet, you type in what you are looking for, and you get all its possible
meanings.

Moreover, data from WordNet can be used as input for various applications. It provides
a database, written in Prolog. This paper documents the Prolog database of WordNet. It
will also provide a few ideas that utilize the database efficiently.

2 Documentation of WordNet from a Prolog program-

mer’s point of view

2.1 Basic concept

WordNet is based on a concept called synsets, also known as synonym sets. A synset is a
group of words, connected by meaning. Only words of the same part of speech can belong

1Special thanks to Dr. Covington for his guidence on the project. Special thanks to Abhishek Jain and
John Burke for proofreading this paper.

1

to the same synset. A synset ID is assigned to every word. Words in the same synset have
the same synset ID. As one word can have several meanings, it can belong to more than one
synset. Then, the word gets several entries in the Prolog database, and each entry has a
different synset ID assigned.

The Prolog clauses, which store this basic information, are defined in the file wn s.pl.
Each clause contains one word, an assigned synset ID, and some additional information.

There are 15 other wn operator .pl files, where operator corresponds to several different
relations in WordNet. For example, the file wn s.pl organizes the synsets, accordingly its
operator s is derived from the word synset.

The relations, described by the operators, are either of semantic or lexical nature. A
lexical relation describes a connection between lexical units, say between words. Grouping
words in synonym sets is a lexical relation. A semantic relation describes a connection
between meanings. For example, hypernymy is a semantic relation of being superordinate or
belonging to a higher rank or class (Fellbaum et al. 2003e).

2.2 The Prolog Files

2.2.1 wn s.pl

One of the main files is wn s.pl, which stores the synset information of the WordNet corpus.
Each word has an entry by the six place predicate

s(synset_ID,w_num,‘word’,ss_type,sense_number,tag_count).

The first argument is the 9-digit synset ID, indicating to which synset does the word belong.
As discussed before, words belonging to the same synset are synonyms, which signifies sim-
ilarity in their meaning. The synset ID encodes information about the syntactic category
of the synset. Synset IDs starting with 1 contain only nouns, synset IDs starting with 2

store the verbs. A 3 in the beginning indicates an adjective, a 4 an adverb. The remaining
eight digits, called synset offset, identify a specific synset.

The second argument w num allows addressing one word in a synset. The words in a
synset are numbered serially, starting with one. For example, the knowledge base for the
synset 100041682 looks like this:

s(100041682,1,‘close_call’,n,1,0).

s(100041682,2,‘close_shave’,n,1,0).

s(100041682,3,‘squeak’,n,2,0).

s(100041682,4,‘squeaker’,n,2,0).

s(100041682,5,‘narrow_escape’,n,1,1).

The third argument is the word itself, written in single quotes.
The ss type stores the synset type. In WordNet the synset categories are limited to

nouns, verbs, adverbs and adjectives. You can not find any pronouns, conjunctions, preposi-
tions or interjections. The ss type instantiated to the letter n, indicates the particular word
is a noun, the letter v refers to a verb, and the letter r to an adverb. Adjectives are divided
into adjectives and adjective satellites. A word is an adjective if it belongs to a head synset.

2

It is an adjective satellite if it belongs to a satellite synset. Head synsets contain at least one
word that has an antonym. Satellite synsets do not contain any word that has an antonym.
The two letters a and s indicate whether a word is an adjective or an adjective satellite.

The fifth argument is the sense number. It gives information about how common a word
is. Words within one part of speech are ordered from most to least frequently. The higher
the sense number, the less common is the word. For example, here are two entries for the
word mouse, the first one refers to the animal, the second to the computer device.

s(101993048,1,‘mouse’,n,1,14).

s(103304722,1,‘mouse’,n,2,0).

According to WordNet the word mouse, referring to the animal, has the sense number 1.
Therefore, it is more common than the word mouse, referring to the computer device with
sense number 2.

The last argument is the tag count. This number indicates how common a word is in
relation to a text. The number is equal to the times the word was found in a test corpus.
Therefore the higher the number, the more common the word.

2.2.2 wn g.pl

The file wn g.pl stores a gloss for every synset. The gloss may contain an explanation,
definition and example sentences.

The two place predicate g has the following structure:

g(synset_ID,‘(gloss)’).

The first argument labels the synset ID, the second argument allocates a gloss, written in
parenthesis and single quotes. For example, the synset with the ID 100031541 consists of
the two words walking and sledding. The matching g clause gives us a definition for the two
words.

g(100031541, ‘(advancing toward a goal; ‘‘persuading him was easy going’’;

‘‘the proposal faces tough sledding’’)’).

2.2.3 wn hyp.pl

Hyp is short for hypernym. A hypernym is a word that is more generic than a given word.
Only verbs and nouns can have hypernyms. For example, mammal and animal are hyper-
nyms of the word dog. Hypernymy is a relation between synsets. Thus, it is a semantical
relation.

The file wn hyp.pl stores hypernym relations in the two place predicate

hyp(synset_ID_1,synset_ID_2).

The synset corresponding to the second argument synset ID 2 is a hypernym of the synset
corresponding to the first argument synset ID 1. For example, 101752990 is the synset ID

of the word dog. Consulting the file wn hyp.pl we find

3

hyp(101752990, 101752283).

The synset 101752283 consists of hypernyms of the word dog, e.g. canine. Bear in mind,
a hypernym of a hypernym of a word, is also a hypernym of the word. This gives you the
possibility of finding hypernym chains.

In the section Working with WordNet the predicates find hyp/3 and find hyp chains/2

will be introduced to experiment with the relation.

2.2.4 wn ent.pl

Ent is short for entailment. An entailment is a verb describing an event that facilitates an-
other event. Therefore only verbs can be described by the relation entailment. For example,
to sleep is an entailment of to snore, as you need to sleep if you snore. The file wn ent.pl
stores all entailment relations. Like hypernyms entailments are semantical relations.

The predicate ent/2 has the same structure as the predicate hyp/2.

ent(synset_ID_1,synset_ID_2).

Synset ID 2 contains verbs that are entailments of the verbs in synset ID 1.
In the section Working with WordNet the predicates find ent/3 and find ent chains/2

will be introduced to experiment with the relation.

2.2.5 wn sim.pl

Sim is an abbreviation for similar meaning. This relation allocates adjectives that have
similar meanings. Again, the relation connects synsets, thus it is semantical.

Like hyp/2 and ent/2, sim/2 takes two synset IDs as arguments.

sim(synset_ID_1,synset_ID_2).

sim(synset_ID_2,synset_ID_1).

As similarity works in both directions, there is a reflexive predicate defined for every clause.
The two addressed synsets are either two head synsets, or one head synset and one satellite
synset. There is no matching sim clause for two satellite synsets. Because, if they would
have similar meanings, they would be grouped together in one synset.

For example, one satellite synset contains the synonyms devious, circuitous and round-
about. By consulting sim/2, we get one head synset with similar meaning, consisting of the
word indirect.

In the section Working with WordNet the predicates find sim/2 and find sim meaning/1

will be introduced to experiment with the relation.

2.2.6 wn mm.pl,wn ms.pl,wn mp.pl

The three file extensions mm, ms and mp refer to the semantic meronym relation, also called
the part-whole relation. A word X is a meronym of a word Y, if you can apply the sentence
A Y has an X or An X is a part of a Y (Beckwith et al. 1993:8). This relation only holds
for nouns. The reflexive relation is called holonym relation.

4

The extension mm refers to the member meronym relation, also called the member-group
relation. For example, the word person is a member meronym of the word faculty, as we
can say A faculty is a group of persons or A person is a member of a faculty. Applying the
reflexive relation, faculty is a holonym of the word person. Accordingly, the predicate of the
wn mm.pl file has the following structure:

mm(synset_ID_1,synset_ID_2).

The words of synset ID 1 are member meronyms of the words of synset ID 2. Reflexive,
the words of synset ID 2 are member holonyms of the words of synset ID 1.

Note, that the first synset ID contains meronyms of words of the second synset ID, not
the other way round. This is explained incorrectly in the original Prolog documentation of
WordNet (Fellbaum et al. 2003a).

The extension ms refers to the substance meronym relation. For example, the word water
is a substance meronym of the word tear as we can say A tear has water as a substance or
Water is a substance of tears. Applying the reflexive relation, tear is a substance holonym
of the word water. The predicate has exactly the same structure as mm/2, only the operator
changed.

ms(synset_ID_1,synset_ID_2).

The words of synset ID 1 are substance meronyms of the words of synset ID 2. Reflexive,
the words of synset ID 2 are substance holonyms of the words of synset ID 1.

The extension mp refers to the part meronym relation. For example, the word leg is a
part meronym of the word table, as we can say A table has a leg as a part or A leg is a part
of a table. Also, the reflexive relation, table being a holonym of leg, is valid. The structure
and unification of the predicate is the same as mm/2 and ms/2.

mp(synset_ID_1,synset_ID_2).

The words of synset ID 1 are part meronyms of the words of synset ID 2. Reflexively, the
words of synset ID 2 are part holonyms of the words of synset ID 1.

In the section Working with WordNet several predicates will be introduced to experiment
with these relations.

2.2.7 wn cs.pl

The file wn cs.pl describes a semantic relation for verbs. The predicate

cs(synset_ID_1,synset_ID_2).

takes a synset ID 1 as the first argument and assigns a synset ID 2 that contains verbs
that are caused by the action of the verbs of synset ID 1. For example, the synset ID

200017177, containing the verb to anesthetize, unifies with the predicate

cs(200017177,200011887).

The synset ID 200011887 contains the verbs to kip, to sleep, to slumber, which are all events
caused by the event of the verb to anesthetize.

The predicate cause/2, defined in Working with WordNet, takes a verb and gives out a
list of verbs connected by this relation.

5

2.2.8 wn vgp.pl

The file vgp.pl handles lexical relations between verbs. The four place predicate

vgp(synset_ID_1,w_num_1,synset_ID_2,w_num_2).

takes two synset IDs, whose synsets are similar in meaning. The second and the fourth
arguments are word numbers, which usually specify one word in a synset. Nevertheless, the
relation holds for any verb in the addressed synset. Therefore, the arguments w num 1 and
w num 2 are instantiated to 0.

Basically, the arguments two and four have no other use than to indicate that vgp is a
lexical, not a semantical relation.

For example,

vgp(200072911,0,200437549,0).

Consulting wn s.pl and wn g.pl, returns that the synset 200072911 containing the words
to grow, to develop, to produce, to get, to acquire, meaning come to have or undergo a change
of physical features and attributes. The synset 200437549 contains the verbs to develop and
to evolve with a similar meaning: acquire or build up traits or characteristics.

Because the relation is reflexive, there is an entry with switched synset ID for every
clause.

2.2.9 wn at.pl

The file wn at.pl describes the attribute relation between noun and adjective synsets. An
attribute is a noun that describes a characteristic of an entity. Each attribute has values,
which are described by adjectives. For example, the noun size is an attribute with the values
little, small, big and large. This relation between nouns and adjectives are defined by the at

operator

at(synset_ID_1,synset_ID_2).

So the entries

at(104322959,301148236).

at(104322959,301149766).

determine that the synset 104322959, containing only the noun weight is in an attribute
relation to the adjectives of the synset 301148236, containing the word heavy, and of the
synset 301149766, containing the word light.

The attribute relation between nouns and adjectives is semantical.

6

2.2.10 wn ant.pl

Ant is an abbreviation for antonymous words. The file wn ant.pl stores all relations be-
tween words that are antonyms. Two words are antonyms if they have opposite meanings.
For example, the two words natural object and artefact are antonyms, which tells us their
meaning is opposite. Being an antonym of a word, does not mean that you can always say,
the antonym is not the word. For example artefact, being an antonym of a natural object,
does not necessarily mean an artefact is not a natural object.

The four place predicate, storing all this information, has the following structure:

ant(synset_ID_1,w_num_1,synset_ID_2,w_num_2).

ant(synset_ID_2,w_num_2,synset_ID_1,w_num_1).

The arguments synset ID 1 and w num 1 refer to one word in the corpus, synset ID 2 and
w num 2 to its antonym.

Note, that the relation antonymy works in both directions, that is being an antonym of
a word makes the word itself an antonym of the antonym. Therefore every ant/4 is followed
by an ant/4, expressing the reverse relation. Antonymy is a lexical relation, as it relates two
words, not two synsets.

2.2.11 wn sa.pl

The file wn sa.pl relates two words, one giving additional information about the other one.
This lexical relation only connects verbs or adjectives. The general structure of the sa

operator takes four arguments, specifying two words.

sa(synset_ID_2,w_num_2,synset_ID_1,w_num_1).

First, let us have a look at sa/4 for verb relations. The first two arguments specify a verb,
the third and fourth argument define its phrasal verbs that are similar in meaning. Recall,
a phrasal verb is a verb plus a preposition that can be different in meaning to the original
verb. For example, to give up would be a phrasal verb, meaning to stop doing something,
which is different to the meaning of the verb to give.

sa(200001742,1,200003768,3).

sa(200001742,1,200004389,3).

The synset 200001742 and word number 1 specify the word to breathe. The two words
described by the third and fourth argument of the two clauses are its phrasal verbs to
breathe out and to breathe in, which have a similar meaning to to breathe. The relation does
not return all phrasal verbs belonging to a verb, only the ones that do not change their
meaning.

For adjectives, the word, specified by the third and fourth argument, describes the word
linked to the first two arguments. If the relation is true for one adjective of a synset, then it
holds for any adjective of the synset. Thus, w num is equal to 0 in every predicate entry. As
an example, consider the word abstract, being the only word of the synset 300012315. The
predicates

7

sa(300012315,0,302319830,0).

sa(300012315,0,301928363,0).

reveal, that the words intangible and impalpable of the synset 302319830 and the word
nonrepresentational of the synset 301928363 describe the word abstract.

2.2.12 wn ppl.pl

The ppl operator arranges the participle relation between verbs and adjectives. In English,
there is the present and the past participle, both describing either a tense form of a verb, or an
adjective derived from a verb. As WordNet does not store any information on different tenses,
the ppl operator describes the verb-adjective participle relation. The present participle adds
-ing to the stem of the verb, e.g. the verb to walk becomes the adjective walking, like in
the phrase a walking person. The past participle adds -ed to the stem of a word to form an
adjective, e.g. the stressed person where the adjective is derived from the verb to stress. The
predicate takes four arguments to specify two words.

ppl(synset_ID_1,w_num_1,synset_ID_2,w_num_).

Synset ID 1 and w num 1 determine the adjective related to the verb, recorded by synset ID 2

and w num 2. The relation is lexical.

2.2.13 wn per.pl

The extension per stands for pertain and describes a lexical relation where a word pertains to
another word. The predicates per/4 defines two words by their synset ID and word number.

per(synset_ID_1,w_num_1,synset_ID_2,w_num_2).

The first word, located by the first two arguments, can either be an adjective or an adverb.
In case of an adjective, the second word must be a noun or another adjective. Then,

the original adjective pertains to the noun or the other adjective. For example, the first
two arguments could refer to the adjective weekly, which pertains to the noun week, defined
by the third and fourth argument. Or, the first two arguments could refer to the adjec-
tive transatlantic, which pertains to the adjective Atlantic, defined by the third and fourth
argument.

If the first two arguments describe an adverb, then the assigned second word is the
adjective from which the adverb is derived. E.g. the adverb essentially is derived from the
adjective essential.

2.2.14 wn fr.pl

The last Prolog database file wn fr.pl is intended to offer a generic sentence frame for one
or all verbs in a synset. The predicate structure is as follows:

fr(synset_ID,f_num,w_num).

8

The first argument is the synset ID of the concerned verb(s). The third argument specifies
the word by a word number or is equal to 0 if the relation holds for every word in the
synset. The second argument specifies, which sentence frame should be assigned to which
verb. Unfortunately, the Prolog database does not offer any information on the sentence
frames. In that sense, the predicate is useless. You would need to consult the WordNet
documentation (Fellbaum et al. 2003d) to translate which f num belongs to which sentence.

In the software packet belonging to this paper, I included a file called wn sen.pl, which
should be added to the original WordNet files. Here, an additional predicate called sen,
short for sentence, is listed.

sen(f_num,string_1,string2).

Sen takes f num as the first argument and assigns two strings. String 1 should be the part
of the sentence in front of the looked up verb, string 2 the part after the verb.

For example, the verb to prefer is the only word in the synset 201433968. Consulting
fr wn.pl we get the predicate

fr(201433968,15,0).

Therefore, we know all verbs in the affected synset, in this case only one, are assigned to the
sentence frame with f num 15. Now, we can consult the new added predicates and find

sen(15,‘Somebody’,‘s something to somebody’).

Accordingly, we find out that the verb to prefer is used in the general context Somebody
prefers something to somebody.

To experiment with fr/3 and sen/3, try the following program. Be sure, that you have
consulted the files wn s.pl, wn fr.pl and wn sen.pl.

% sentence_frame(+Verb)

% take an atom as argument, which should be a verb, and print out a sentence

% on the screen that shows the context in which the verb usually occurs

sentence_frame(Verb) :-

s(Num,W_Num,Verb,v,_,_),

fr(Num,F_Num,W_Num),

sen(F_Num,String_1,String_2),

write(String_1),

write(Verb),

write(String_2), nl.

sentence_frame(Verb) :-

s(Num,_,Verb,v,_,_),

fr(Num,F_Num,0),

sen(F_Num,String_1,String_2),

write(String_1),

write(Verb),

write(String_2), nl.

9

The predicate sentence frame/1 takes a verb and finds its synset ID. Then, it consults the
predicate fr/3, which either succeeds, if the third argument is equal to the w num, or fails
and backtracks. In the later case, the fr/3 succeeds with 0 as the third argument, meaning
the relation holds for all the verbs in the synset. In the end, consult sen/3 and output the
matched sentence.

Examples:

?- sentence_frame(‘prefer’).

Somebody prefers something.

?- sentence_frame(‘walk’).

Somebody walks.

?- sentence_frame(‘give’).

Somebody gives somebody something.

3 Working with WordNet

The following section discusses some basic issues that arise while working with WordNet and
offers some handy predicates to work efficiently. For further documentation of the mentioned
predicates, please consult the Prolog files of the predicates.

3.1 Indexing and WordNet

The Prolog database files of WordNet consist of 484381 lines of code. Therefore, speeding
up the processing of these files is one of the main goals when working with WordNet.

One approach to reduce the running time for looking up a word is indexing. Indexing
decreases the number of clauses that are tried before matching one. The simplest version
of indexing, used in every Prolog, is to go directly to the right predicate of the asked arity.
SWI-Prolog also indexes on the first argument by default (Wielemaker 2003:81).

To look up a word in WordNet we need to consult the predicate

s(+Synset_ID,+W_Num,+Word,+SS_Type,+Sense_Number,+Tag_Count).

After finding out which synset ID is assigned to the word, one can look up the meaning by
consulting

g(+Synset_ID,+Gloss).

The given word is stored in the third argument of the s predicate, which means the default
indexing does not affect the unification.

There are two possible attempts to speed up the running time by indexing. The built-in
predicate

index(+Predicate).

10

specifies on which arguments of a predicate indexing should be performed. The argument
Predicate gets instantiated to 1 if indexing were to be executed on the argument, otherwise
to 0. Keep in mind that at most four arguments and only the first 32 arguments can be
indexed (Wielemaker 2003:82). In this case the predicate

index(s(0,0,1,0,0,0)).

would optimize the running time of looking up a word. The advantage of this technique is
that we can declare indexing on more than one argument, e.g. on the Synset ID and the
Word. The disadvantage is that we would have to declare the predicate index/1 in every file
we produce, and the database becomes less portable.

The second attempt to speed up the time by indexing, is to change the argument order
of wn s.pl. The predicate improve file/0 takes the word from the s predicate and puts it
as the first argument. The other arguments remain in their order. The newly created file is
called wn s new.pl. Now the default indexing of Prolog speeds up the process. Timing the
simple predicate of looking up a word shows that the indexing speeds up the process nine
times.

3.2 Converting WordNet Files

Working with the WordNet files with respect to Natural Language Processing, there are
several generalisations that simplify the interaction with other tools. Especially in developing
ProNTo (Prolog Natural Language Tools), we agreed on the following parameters to improve
interaction. First, we only want lower case letters to appear in the clauses. Second, instead
of using underscores to divide words, we represent the words in lists. Furthermore, we use
open lists, in the aspect that one wants to work not only with one word at a time, but with
sentences or texts that can be easily turned into lists.

The predicate convert file/0 takes care of converting the wn s.pl file accordingly. It
is an extended version of the predicate improve file/0. All advantages of using indexing
remain the same. The following clause is an example of the new structure:

s([human, action|_G4016],100022113,2,n,1,1).

3.3 A subset of WordNet

For testing purposes, it is handy to use only a subset of WordNet, which is smaller and
contains only the most common words of the English language. Here, I want to introduce
the predicate

subset_wn_s(+Number).

that takes the wn s.pl file as input and creates a new file wn s subset.pl, containing only
the most common words, based on the last argument of the s/6 predicate (see section Doc-
umentation of WordNet from a Prolog programmer’s point of view). The argument Number
indicates how many words should be in the subset. This should speed up experimenting
with WordNet enormously.

11

If you decide to work with a subset on a project, it might be interesting to not only
shorten the main wn s.pl file, but also all other WordNet files. The predicate

subset_wordnet(+Number).

calls subset wn s/1, and then converts all other WordNet files accordingly. The new files
are named wn operator subset.pl.

These predicates offer the possibility of knowing the advantages associated with working
on subsets of WordNet. Apart from that, they offer an outline on how to program the
automatic converting of the files. An extension for the future could be to create different kinds
of subsets of WordNet, e.g. a subset containing only nouns, only verbs or only adjectives.

3.4 Useful predicates for working with WordNet

To work with WordNet, we need predicates that interface with the Prolog databases. All
predicates listed here, including the ones of earlier sections, are described in detail in the
Prolog files. To use a predicate, you just need to consult the file in which the predicate is
defined, all other needed files will be consulted by ensure loaded.

First, it needs to be clarified which input should to be accepted by the predicates. As we
converted our files to use open lists, it is obvious that open lists are one possible input. To
improve the convenience for the user, atoms should be accepted, too. For example, if you
want to input the word dog you could either type dog or [dog|X]. There is one exception:
as we decided earlier, that underscores are not customisable with other Natural Language
Processing Tools, you have to use the open list format if you want to give in two words, e.g.
[physical,thing|X].

All predicates are designed to be used with the converted WordNet files, not the originals.
Working with subsets or the whole database is optional.

One of the most obvious tasks in WordNet is the looking up of words. The predicate

lookup(+Word).

looks up a word in wn s.pl and prints out its syntactic category and definition. The extended
predicate

lookup(+Word,-SynsetList).

looks up a word and returns a list of all synsets in that the word was found. This can
be useful if you want to get synonyms for all the different meanings of a word. The two
predicates are defined in the file lookup.pl.

In the first part of this paper, I documented the WordNet files and described how the
words are grouped in synsets. The predicate

find_synset(+Synset_ID,-WordList).

returns a list of all words that are in the synset of the given Synset ID. The predicate is
defined in the file find synset.pl.

Also, all semantical and lexical relations have been explained in detail. The following
predicates experiment with these relations.

12

find_hyp_chains(+Word,+Cat).

finds all hypernym chains of a word and lists them on the screen. For example,

[[organism|_G529], [being|_G520]]

is a hypernym chain for the word dog, so is

[[animal|_G616], [animate, being|_G607], [beast|_G595], [brute|_G586],

Bear in mind, that only verbs and nouns can be hypernyms. As a word can only have
hypernyms of the same category as itself, the user has to specify the category in the second
argument. For example, if you are looking for hypernyms of the noun dog, you might find
the word mammal. You certainly do not want to find the word to move, which is a hypernym
of the verb to dog.

find_hyp(+Word,+Cat,-HypList).

finds all hypernyms of a Word and returns them in a list.
The two predicates

find_ent_chains(+Word), find_ent(+Word,-EntList).

work the same way as the according hypernym predicates, only that we do not need to
specify the category, as an entailment can only be a verb.

The two hypernym predicates and the two entailment predicates are defined in the file
hyp ent.pl.

As the structure of the predicates are so similar, the predicates find hyp chains/2 and
find ent chains/1 call the predicate find chain/3, which is a generalized procedure, with
the fourth argument handing over whether an entailment or a hypernym relation is requested.
Likewise find hyp/3 and find ent/1 calls find/4, a generalized procedure, handing over
which relation is requested in the third argument.

The predicate

find_sim_meanings(+Word).

takes an adjective, finds all its similar meanings and prints it on the screen. The similar
predicate

find_sim(+Word,-SimList).

returns a list of words with similar meanings of the input word. The predicates are similar
to the hypernym and entailment predicates. But, there is one basic difference: Handling
similar meanings, it does not seem reasonable to follow chains, like we did for hypernyms
and entailments. Therefore, the algorithm just looks for all similar meanings of the given
word with the build-in predicate find all. It does not use recursion to find a chain of
similar meanings.

As discussed in the earlier sections wn mm.pl, wn ms.pl and wn mp.pl describe sev-
eral relations between meronyms and holonyms. The following predicates interface these
relationships. This relation only holds for nouns. The predicate

13

member_of(+Word,-GroupList).

takes a word as input and finds the list of groups that the word is a member of. For example,

?- member_of(faculty,X).

X = [school|_G413]

As a result we get that a faculty is a member of a school.

has_member(+Word,-MemberList).

finds the list of members that are in the group. For example,

?-has_member(faculty,X).

X = [professor|_G407]

As a result we get a professor is a member of a faculty.
Similarly, the predicates

substance_of(+Word,-List).

has_substance(+Word,-SubstanceList).

find the list of words that a given word is a substance of, or the list of substances that are
in one word.

Examples:

?- substance_of(water,X).

X = [tear|_G407]

? has_substance(water,X).

X = [h2o|_G407]

Water is a substance of a tear, H20 is a substance found in water.
The two predicates

part_of(+Word,-WholeList), has_part(+Word,-PartList).

return the list of things that one word is a part of, or the list of things that are part of one
word.

Examples:

?- part_of(leg,X).

X = [table|_G407]

? has_part(leg,X).

X = [knee|_G407]

14

The word leg is a part of a table and a knee is a part of a leg.
The input can be an atom or an open list, the output is always an open list. The

predicates are defined and documented in the file meronym holonym.pl.
The three predicates member of/2, substance of/2 and part of/2 call the predicate

all one/4 with the third argument instantiated to the corresponding filename extensions
mm, ms and mp. Then the procedure is generalized. First, we form the predicate we are
looking for by using the univ operator, then we call the build-in predicate find all/3 to
get all possible answers. Make list/2 then finds all the words belonging to the synset IDs
and stores them in a list. There are two alternatives defined, one handling atoms, and one
handling open lists. The predicate all two/4 is similar, but instead of matching the first
argument and returning the second, it is looking for the first one by unifying the second one.
By that procedure it handles the cases for the predicates has member/2, has substance/2

and has part/2.
Last, I want to describe the predicate

cause(+Verb,-CauseList).

Given a verb, it creates a list of verbs that are causes of the given verb. For example,
the verb to leak is a cause of the verbs to break, to get out, to get around. The predicate
is defined in the file cause.pl and consists of only one line of code. It works exactly the
same way as the predicate member of/2. It calls the predicate all one/4 with the third
argument instantiated to cs, the wn extension of the corresponding database file. Now, we
realize why the predicate all one/4 needs the fourth argument, indicating the category. In
the meronym-holonym relation this seemed unreasonable, as we were only handling nouns.
But as we reuse the predicate for the cs relation, we need to introduce another argument, so
that it can handle verbs, too.

3.5 How to handle common words that are not in WordNet

This section is about words that can not be found in WordNet. This becomes a non-trivial
question when faced with the fact that WordNet Files act as the database for Natural
Language Processing Tools.

The predicate

lookup_text(+FileName).

tries looking up all the words in a text, finds out, which words are not in WordNet and prints
them on the screen. By running the program, you might find that the words this, which,
whether, of, from, the, my, is are not in the WordNet database.

In what way to handle these words, depends on the problem you are approaching. Ex-
tending the knowledge base is one.

Lookup text/1 would be more useful if the words would not be printed on the screen,
but returned in a list. The predicate

lookup_text(+FileName,-List).

executes this.

15

3.6 Interfacing with the ProNTo Morphological Analyser

The ProNTo toolkit are independent Natural Language Processing Tools, which can be used
alone or together. If used together, the WordNet database would have to interface with the
morphological analyser. Designed by Jason Schlachter, the ProNTo morphological analyser
has several outputs that need to be checked in WordNet whether they are words or not.

The morphological analyser is able to analyze only one word at a time. It outputs
a list containing a single morphological analyzes. By backtracking you can get all other
possibilities. The output could then be

[[walk,-ed]].

Later, the morphological analyzer has been extended to output not only one analyzes, but
a list containing all possibilities of how to split up one word, e.g.

[[walked],[walke,-d],[walk,-ed]].

Now, to check whether one of the morphological interpretations is a word or not, we call the
predicate

morph_atoms_lookup(+Morph).

which takes one of the just described outputs and succeeds if the word, or one of the words,
can be found in WordNet and fails if none can be found.

But the morphological analyzer also interprets longer phrases or sentences. E.g. the
output for a sentence could be

[[[he]],[[walked],[walke,-ed],[walk,-ed]],[[slowly],[slow,-ly]]].

This case is handled by the predicate

morph_bag_lookup(+Morph).

which takes the described input and succeeds if at least one word of each list, containing
different morphological analyses of a word, is found in WordNet and fails if not.

These predicates might be useful for someone who wants to interface our tools. But it
might not be enough that the predicates are succeeding or failing, some output containing
information would be useful. Therefore I designed two more predicates

morph_atoms_lookup(Morph,Result).

morph_bag_lookup(Morph,Result).

which are taking the same input, but instead of failing or succeeding, they return a list to
the second argument. This list contains a list for each input word. Either, if the word can
not be found, it returns [is,not,a,word], or if the word can be found, it returns the list
[word,synset ID,w num,category].

16

Examples: 2

?- morph_atoms_lookup([[talk,-ed]],R).

R = [[talk, 100677091, 1, n]] ;

R = [[talk, 105953501, 1, n]]

?- morph_bag_lookup([[[he]],[[talked],[talke,-d],[talk,-ed]]],R).

R = [[he, 105716399, 1, n], [talk, 100677091, 1, n]] ;

R = [[he, 105716399, 1, n], [talk, 105953501, 1, n]]

For further reference on how the predicates work, please consult the file morph lookup.pl.

4 Conclusion

This paper was written to give a good documentation of the Prolog WordNet Files. The
knowlege presented in this paper should simplify the work with the Prolog WordNet database.
Of course, the list of interface predicates can be extended, according to the needs, felt by
the user.

2In this case the pronoun he is found in WordNet as there is an entry for he of the category noun. But
not all pronouns have entries like this. For example the word she can not be found in WordNet.

17

References

Beckwith, Richard; Fellbaum, Christiane; Gross, Derek; Miller, George A.; and Miller, Katherine
(1993). Five papers on WordNet. Technical report. Princeton University. Computer
Science Laboratory.

Fellbaum, Christiane (1999). WordNet: an electronic lexical database. Cambridge, Mass:
MIT Press.

Fellbaum, Christiane; Langone, Helen; Miller, George A.; Tengi, Randee; Wakefield, Pamela;
and Wolff, Susanne (2003a). Format of Prolog-loadable WordNet files - prologdb(5WN).
WordNet 1.7.1 Reference Manual: Section 5 File Formats. Princeton University.
http://www.cogsci.princeton.edu/̃wn/man1.7.1/prologdb.5WN.html.

Fellbaum, Christiane; Langone, Helen; Miller, George A.; Tengi, Randee; Wakefield, Pamela;
and Wolff, Susanne (2003b). Format of sense index file - senseidx(5WN). WordNet 1.7.1
Reference Manual: Section 5 File Formats. Princeton University.
http://www.cogsci.princeton.edu/̃wn/man1.7.1/senseidx.5WN.html.

Fellbaum, Christiane; Langone, Helen; Miller, George A.; Tengi, Randee; Wakefield, Pamela;
and Wolff, Susanne (2003c). Format of WordNet database files - wndb(5WN). WordNet
1.7.1 Reference Manual: Section 5 File Formats. Princeton University.
http://www.cogsci.princeton.edu/̃wn/man1.7.1/wndb.5WN.html.

Fellbaum, Christiane; Langone, Helen; Miller, George A.; Tengi, Randee; Wakefield, Pamela;
and Wolff, Susanne (2003d). Format of lexicographer files - wninput(5WN). WordNet
1.7.1 Reference Manual: Section 5 File Formats. Princeton University.
http://www.cogsci.princeton.edu/̃wn/man1.7.1/wninput.5WN.html.

Fellbaum, Christiane; Langone, Helen; Miller, George A.; Tengi, Randee; Wakefield, Pamela;
and Wolff, Susanne (2003e). WordNet 1.7.1. - a lexical database for the English language.
http://www.cogsci.princeton.edu/̃wn.

Wielemaker, Jan (2003). SWI 5.1 Reference Manual. University of Amsterdam. Dept. of
Social Science Informatics (SWI).

18

