
ProNTo Morph: Morphological Analysis Tool
for use with ProNTo (Prolog Natural

Language Toolkit)

Jason G. Schlachter
Artificial Intelligence Center
The University of Georgia

Athens, Georgia 30602-7415 U.S.A.
http://www.ai.uga.edu

May 8th 2003

1 Introduction

The paper describes ProNTo Morph, a morphological parsing tool for En-
glish, written in ISO Prolog and fully compatible with SWI-Prolog version
5.0.10 (see site for download http://www.swi-prolog.org).

The program was developed by extending and modifying the program,
Part Of English Morphology, developed by Dr. Covington at the University
of Georgia. The source code for this program, poem.pl, is downloadable at
his web site http://www.ai.uga.edu/mc.

Morphological parsing is the process of breaking a word into its smallest
meaningful components, or morphemes. Our program, ProNTo Morph, is
concerned with breaking a word into its root and suffix.

For example, the word harder is made up of two morphemes, hard and
-er. In the ideal situation, ProNTo Morph would be given the input string:

1

harder

and the program would output a listing of morphemes such as:

[hard,-er]

Unfortunately, morphological parsing is not always this simple. There are
many spelling rules that may break a given word into different morphemes.
Since a computer algorithm can not know which of these is the correct way,
it must have the ability to explore alternative solutions.

The following example help to will illustrate this idea. Let’s assume that
ProNTo Morph is configured to output one alternative at a time, and it is
given the input string

harder

then the output would be as follows:

[harder]

This is not the correct morphological parsing. If the program is forced to
backtrack to the next untried alternative, it will return the following solution:

[harde,-er]

This is still incorrect. If the program is forced to backtrack a second time,
it returns the following list:

[hard,-er]

This is the correct solution. If the program was forced to backtrack again
it would fail because there are no more untried alternative.

The above example illustrates how ProNTo Morph behaves in a non-
deterministic way to return alternative solutions upon backtracking. If you
would prefer that it returns all possible morphological parsings at once, it
can also be called in a deterministic manner.

2

The next section of this paper will describe the design of the program
and user configurable options. The third section of this paper documents
the callable predicates of ProNTo Morph and provides example input and
output for clarity.

2 Program design

ProNTo Morph can be executed in a deterministic or nondeterministic man-
ner. If you ask the program for one parsing of a word, the program is nonde-
terministic and can backtrack to find untried alternatives. The only exception
to this is when the word being parsed is in the irregular word list. In this
case, the program will return the parsing specified by the irregular word list
and will block backtracking. After all, if a word is irregular, there is no point
in applying general spelling rules.

The following subsections describe the input and output types that ProNTo Morph
allows.

2.1 ProNTo Morph accepts input in three forms

1. It can accept a list of tokens from et.pl (Efficient Tokenizer).

[w([t,e,s,t,i,n,g]),w([t,h,e]),w([t,o,k,e,n]),w([l,i,s,t])]

It also accepts any single word structure from that list.

w([t,e,s,t,i,n,g])

2. It can accept character lists:

[t,e,s,t,i,n,g]

and lists of character lists:

[[t,e,s,t,i,n,g],[m,o,r,e]]

3. It can accept atoms.

3

testing

and lists of atoms

[testing,more,words]

2.2 ProNTo Morph returns solutions in two forms

1. It can output a list of lists where each inner list contains a morpholog-
ical parsing of a word.

See examples below:

[[harder]]

or

[[work],[hard,-er]]

2. It can output a list that contains every backtracking alternative.

See examples below:

[[[harder]], [[harde, -er]], [[hard, -er]]]

or

[[[[work]]], [[[harder]], [[harde, -er]], [[hard, -er]]]]

3 User modifiable files

3.1 Spelling rules

There is a Prolog file, pronto morph spelling rules.pl that contains all the
spelling rules used by ProNTo Morph to parse words. This can be modified.

You may want to comment out some of these rules to reduce the number
of backtracking alternatives because some of them are only used by a small

4

number of words in the English language. You may also want to add spelling
rules that are relevant to your lexicon.

The order of the spelling rules in the file is important. It determines the
order in which ProNTo Morph uses them to create morphological parsings
of the input words. You may wish to rearrange them, so that the rules most
used by your lexicon are tried first. This may help to reduce the amount of
backtracking.

3.2 Irregular word list

What’s an irregular word list? It is a list of irregular words that can not
be parsed by regular spelling rules. Each entry contains an irregular word
and the correct parsing for that word. When the program tries to parse a
word, it first looks to the irregular word list, and if it finds the word in that
list it returns the correct parsing and blocks backtracking (i.e. it becomes
deterministic).

Many of the words in the irregular word list were taken from the irregular
word list files of WordNet, a lexical database for the English Language. This
program is downloadable at http://www.cogsci.princeton.edu/ wn/.

You can modify the irregular list for your purposes (i.e. animal or plant
taxonomy) by modifying one of the four irregular word files. There is one for
nouns, verbs, adjectives, and adverbs, and they are named as such.

For example, the following is an entry from pronto morph irreg noun.pl :

irregular_form(children,X,[child,-pl| X]).

In this case,

children

is the irregular word and

[child,-pl]

is the list of morphemes. You can add new entries in the same format or
remove entries that are not part of your lexicon.

5

4 User-callable predicates

4.1 morph tokens(+Tokens,-List)

Converts the output of et.pl to a list of morphemes. Tokens should be in-
stantiated to a list of tokens from et.pl (Efficient Tokenizer) or a single token
from that list. The predicate will unify List with a list of lists where each
inner list contains a morphological parsing of a word.

The predicate is non-deterministic and will backtrack to alternative mor-
phological parsings upon failure. If there are no alternatives the predicate
will fail.

Example One

input:

w([h,a,r,d,e,r])

output:

[[harder]]

Example Two

input:

[w([w,o,r,k]),w([h,a,r,d,e,r])]

output:

[[work],[hard,-er]]

6

4.2 morph chars(+Chars,-List)

Converts character lists to a list of morphemes. Chars should be instantiated
to a character list or to a list of character lists. The predicate will unify List
with a list of lists where each inner list contains a morphological parsing of
a word.

The predicate is non-deterministic and will backtrack to alternative mor-
phological parsings upon failure. If there are no alternatives the predicate
will fail.

Example One

input:

[h,a,r,d,e,r]

output:

[[harder]]

Example Two

input:

[[w,o,r,k],[h,a,r,d,e,r]]

output:

[[work],[hard,-er]]

Although this required backtracking to find the correct parsing.

7

4.3 morph atoms(+Atoms,-List)

Converts atoms to a list of morphemes. Atoms should be instantiated to an
atom or a list of atoms. The predicate will unify List with a list of lists where
each inner list contains a morphological parsing of a word.

The predicate is non-deterministic and will backtrack to alternative mor-
phological parsings upon failure. If there are no alternatives the predicate
will fail.

Example One

input:

harder

output:

[[harder]]

Example Two

input:

[work,harder]

output:

[[work],[hard,-er]]

4.4 morph tokens bag(+Tokens,-List)

This predicate takes the same input as morph tokens/2, but it will unify List
with a list that contains every backtracking alternative.

The predicate is deterministic and can not backtrack. If asked to back-
track the predicate will fail.

Example One

input:

8

w([h,a,r,d,e,r])

output:

[[[harder]], [[harde, -er]], [[hard, -er]]]

Example Two

input:

[w([w,o,r,k]),w([h,a,r,d,e,r])]

output:

[[[[work]]], [[[harder]], [[harde, -er]], [[hard, -er]]]]

4.5 morph chars bag(+Chars,-List)

This predicate takes the same input as morph chars/2, but it will unify List
with a list that contains every backtracking alternative.

The predicate is deterministic and can not backtrack. If asked to back-
track the predicate will fail.

Example One

input:

[h,a,r,d,e,r]

output:

[[[harder]], [[harde, -er]], [[hard, -er]]]

Example Two

input:

[[w,o,r,k],[h,a,r,d,e,r]]

output:

[[[[work]]], [[[harder]], [[harde, -er]], [[hard, -er]]]]

9

4.6 morph atoms bag(+Atoms,-List)

This predicate takes the same input as morph atoms/2, but it will unify List
with a list that contains every backtracking alternative.

The predicate is deterministic and can not backtrack. If asked to back-
track the predicate will fail.

Example One

input:

harder

output:

[[[harder]], [[harde, -er]], [[hard, -er]]]

Example Two

input:

[work,harder]

output:

[[[[work]]], [[[harder]], [[harde, -er]], [[hard, -er]]]]

5 Using ProNTo Morph with other ProNTo

modules

This program has been developed to work with the other modules of ProNTo.
It has been fully tested with ProNTo’s WordNet program and the Efficient
Tokenizer (ET) and there are no known bugs.

The full integration of all components of ProNTo will require some pro-
gramming in Prolog, however this should be straight forward and require

10

minimal effort. Of course if you are adding to the system’s complexity then
it may require a good bit of programming.

Please mention the author of this program and other ProNTo packages if
you use them in your work.

11

References

Covington, Micheal (2003) Part Of English Morphology
http://www.ai.uga.edu/mc

Fellbaum, Christiane; Langone, Helen; Miller, George A.; Tengi, Randee;
Wakefield, Pamela; and Wolff, Susanne (2003e). WordNet 1.7.1. - a
lexical database for the English language.
http://www.cogsci.princeton.edu/̃wn.

Wielemaker, Jan (2003). SWI 5.1 Reference Manual. University of
Amsterdam. Dept. of Social Science Informatics (SWI).

12

