Improving Upon Earley’s Parsing Algorithm
In Prolog

Matt Voss
Artificial Intelligence Center

University of Georgia
Athens, GA 30602

May 7, 2004

Abstract

This paper presents a modification of the Earley (1970) parsing
algorithm in Prolog. The Earley algorithm presented here is based
on an implementation in Covington (1994a). The modifications are
meant to improve on that algorithm in several key ways. The parser
features a predictor that works like a left-corner parser with links,
thus decreasing the number of chart entries. It implements subsump-
tion checking, and organizes chart entries to take advantage of first
argument indexing for quick retrieval.

1 Overview

The Earley parsing algorithm is well known for its great efficiency in produc-
ing all possible parses of a sentence in relatively little time, without back-
tracking, and while handling left recursive rules correctly. It is also known
for being considerably slower than most other parsing algorithms!. This pa-
per outlines an attempt to overcome many of the pitfalls associated with
implementations of Earley parsers. It uses the Earley parser in Covington
(1994a) as a starting point. In particular the Earley top-down predictor is
exchanged for a predictor that works like a left-corner predictor with links,

1See Covington (1994a) for one comparison of run times for a variety of algorithms.

following Leiss (1990). Chart entries store the positions of constituents in
the input string, rather than lists containing the constituents themselves,
and the arguments of chart entries are arranged to take advantage of first
argument indexing. This means a small trade-off between easy-to-read code
and efficiency of processing.

The paper assumes a general understanding of chart parsing, and other
standard parsing algorithms. A brief overview of the Earley algorithm is pre-
sented, followed by an implementations that makes the above modifications
to the original.

2 Earley’s Algorithm

An Earley parser is an active chart parser?. It eliminates backtracking com-
pletely by making a chart entry for everything that it has parsed: completed
constituente (inactive constituents), as well as constituents being parsed (ac-
tive constituents). It has several other attractive features:

1. It has an upper time bound proportional to n?, and a lower time bound
near n. This is close to optimal.

2. It does not specify a grammar, or a form for the grammar. It works on
any.

3. It does not loop on left recursive rules, a problem that arises for parsers
using Definite Clause Grammars.

4. Since it puts information about active as well as inactive constituents
in the chart, it pursues all possible parses concurrently. At the end of
the parse, all the alternatives are also stored in the chart.

Earley chart entries keep track of four pieces of information:

1. The current goal.
2. Its starting position.

3. A list of constituents left to parse to complete the goal.

2For an introduction to chart parsing in Prolog the reader is referred to Covington
(1994a) and Gazdar and Mellish (1989)

4. The endpoint of the current goal.
Earley represented this information as a set of production rules of the form:
S — eNP VP 00
S— NPeVP (02

The dot represents the current position of the parser in the input stream.
The first rule means the parser is at the beginning of the S constituent. The
second rule above means the parser has found an NP and is now looking for
a VP. The numbers repres

As an active chart parser Earley’s algorithm needs to do three things:

1. Add “active” entries, more current goals, to the chart. It will do this by
looking for rules that expand current goals, and making chart entries
based on these rules.

2. Update current goals after looking at the next word in the input stream.
This means adding chart entries that reflect the state of the parser after
accepting a word.

3. Use any completed constituents to complete goals requiring those con-
stituents. For example, if you have completed an NP and a VP, then
complete an S.

These three parts are called the predictor, the scanner, and the completer.
They will be the three main components of the parser.

Earley’s original proposal was a top-down predictor. This predictor is
known to over-predict because it does not look ahead at the next word in
the input stream. It will assert chart entries for all of the rules that have the
current goal as their main goal, no matter what their subgoals are. Changing
this feature is the primary focus of the implementation here. However there
are some other considerations to be made before changing this feature.

3 Chart Entries

We need a representation for chart entries in Prolog. Sacrificing some read-
ability, we can take advantage of Prolog’s first argument indexing to represent
chart entries as follows:

chart (0,0, [np,vpl,s).
chart (1,0, [vp]l,s).

These entries express the same information as the chart entries in Earley
notation above, but they do it in reverse order. The first argument is the
current position in the input stream, the second argument is the start point
of the current constituent, the third argument is a list of subgoals yet to be
processed, and the fourth argument is the current goal. The idea is that
there many fewer constituents that end at a given position in the list than
constituents that begin there, so we should index by the argument with more
distinct values to make looking these chart entries up more efficient.

We can look at an alternative to see the benefit of this approach. Chart
entries could be presented as follows:

chart(s,0, [np,vp],0).

Comparing the run times for parsing the sentence “that dogs chase cats
surprises me” 500 times with each representation shows how striking the
improvement can be. The alternative averaged around 80 seconds runtime,
while the chosen representation averaged around 10. The test was conducted
on a Pentium 2 733 MHz machine. The numbers are not so important as
the large difference between them. Simpler sentences will produce less of a
difference in runtime. This is by no means an extensive test but it at the
very least presents some evidence in favor of the chosen representation.

Gazdar and Mellish (1989)proposes chart entries also include a fifth ar-
gument representing a list of all the constituents that have been parsed. this
way, when the parse is finished, the user can display the parse tree. This
approach,however does not give the option of leaving out that step. The
parse tree can be retrieved by adding arguments to the nodes in the rules.
Hence the fifth argument is left off of the chart in favor of a more flexible
parser.

3.1 Grammars

The grammar is the only part of the program that the user supplies. A
sample grammar is included along with the source code for the parser. If you
want to make a custom grammar, then include the clause

:— ensure_loaded(’earley.pl’).

at the top of your file. Consult your grammar file to use the parser.
Words and rules follow the representation used by Covington (1994a).
Words are represented by a two place predicate as follows:

word(d,the).
word(n,cat) .
word (v, jumped) .

The first argument is always the part of speech of the word. The second
argument is the word itself.
Rules are represented similarly:

rule(s, [np,vpl).
rule(np, [d,n,]).
rule(vp, [v,npl).

The first argument is the constituent; the second argument is a list of the
constituents that comprise it.

Representing rules and words in this manner allows for maximum flexi-
bility in the grammar. It is very easy to add arguments to the constituents
or words for use with WordNet (Princeton 2003), GULP (Covington 1994b),
or to produce tree structures from the grammar.

3.2 Using WordNet to Supply Words

Using WordNet is simply a matter of adding another clause word/2 clause
to the grammar. It should be as follows:

word(Cat,Word) :-
s(_,_,Word,Cat,_,_).

The user should make sure to take note of the category markers in Word-
Net and construct rules accordingly. The user should also be aware that
none of the closed-class words are in WordNet. These the user will have to
include.

3.3 Adding Arguments in GULP Notation

Adding arguments in GULP notation is fairly straight forward. The parser
treats any rule, with or without arguments on the goals, in the same way.
To use GULP just add arguments to the appropriate goals. For example:

5

rule (np(number:N..case:C), [n(number:N. .case:C)]).
word (n(number:sg. .case:nom) ,she) .

3.4 Using ProNTo _Morph

ProNTo_Morph (Schlacter 2003) is a morphological analyzer for English and
is availible at the ProNTo website:

http:\\www.ai.uga.edu\mc\ProNTo

A large lexicon is easy to create using ProNTo_Morph in conjunction with
WordNet and GULP. The idea is to run each word through ProNTo_Morph,
strip off the endings, look up the root in WordNet and use the suffix to take
care of agreement issues. An example of a grammar that uses these three
tools to check for subject/verb agreement can be found in the file grmr. glp.
The following is an example to help make the key idea clear.

word (n(number:pl) ,Word) :-
morph_atoms (Word, [[W,-es]]),
s(_,_,W,n,_,.)

fail.

word (n(number:pl) ,Word) :-
morph_atoms (Word, [[W,-s]1),
S(—’—’w’n’—,—)

3

fail.

word (n(number:pl) ,Word) :-
morph_atoms (Word, [[W,-pl]]),
S(—’—’w’n’—,—)

fail.

We find a plural noun in the following way. ProNTo_Morph distinguishes
three possible endings for a plural noun: ‘-es’,-s’;and ‘-pl’. For each case
we have one word/2 clause. I will explain the first one. morph_atoms/2 is
non-deterministic. It returns each possible morphological analysis only upon

6

backtracking. So if the first one does not match what we are looking for
we need to fail and check other posibiities. In the first clause, we break off
endings until we get an ’-es’ ending, then look the root up in WordNet to
make sure we have a valid word.

A sample grammar that illustrates the use of ProNTo_Morph in conjunc-
tion with GULP and WordNet is included with the parser in a file called
grmr.glp. In addition an updated version of GULP is required and also
availible with the parser in a file called gulp3swi.pl. To use this version
of GULP simply consult gulp3swi.pl into SWI-Prolog, then consult the
appropriate .glp file.

4 The Parser

The parser is driven by a single predicate that takes care of preparing the
input for parsing and then actually parsing it.

4.1 parse(+Constituent,+List)

This predicate oversees the entire parsing operation. It does a few things to
set up the parse, then passes control to process/2, which does the parsing.

parse(C,S1) :-
clear_chart,
convert(S1,0,End),
get_links,
store(chart(0,0,start, [C])),
process(0,End),
chart(End,0,C, [1).

clear_chart/1 gets rid of all chart entries. convert/3 turns the input
list into clauses that reflect the word, the position before the word, and the
position after the word. For example, c(0,1,the) says the first word in the
sentence is ‘the’. get_links asserts links for each goal type in the rule set.
For example:

1(d,s).
1(np,s).
1(d,n).

These predicates say there is a link between the first argument and the sec-
ond.

The parse is finished when process/2 has reached the index of the last
word in the sentence, and there is a chart entry whose main goal is our initial
goal, and which has no more subgoals to try.

Example queries:

7- parse(s, [the,dog,chases,the,cat]).
Yes

7- parse(up, [the,dog]) .
Yes

4.2 store(4+ChartEntry)

We need to do a little more than just add chart entries whenever we find a
candidate. In particular we check to make sure there’s not already a chart
entry that contains the information we are trying to add. We also do a
subsumption check on both the current goal and the list of subgoals. The
subsumption check is important when we have arguments on the nodes. If
the goal or its subgoals have an argument that is an uninstantiated variable
we want to make sure the variable remains that way before it goes into the
chart. If the variable would unify with one of the arguments of a node in a
chart entry, the subsumption check prevents that new entry from going into
the chart. If it was allowed to go in, that variable would be instantiated,
possibly to something undesirable

store(chart(A,B,C,D)) :-

\+ (chart(A,B,C1,D1),

subsumes_chk(C1,C),
subsumes_chk(D1,D)),
asserta(chart(A,B,C,D)).

As packaged, the parser includes a subsumption checker from Covington
(1994a); however, some Prolog implementations have a predefined version by
the same name. If this is the case with your particular Prolog, just comment
out the line :- ensure_loaded(’subsumes.pl’). in the file earley.pl.
This is a slight inconvenience but ensures you will be running the most effi-
cient version of the predicate.

4.3 process(+StartPosition,-EndPosition)

This predicate oversees the parsing process. It calls the three parts of the
parser: the predictor, the scanner, and the completer until the end of the
sentence is reached.

process(End,End) :- !.

process(Position,End) :-
predictor(Position),
scanner (Position,NewPosition),
completer (NewPosition),
process (NewPosition,End) .

4.4 predictor(+Position)

The predictor works like a left—corner parser with links. We have already seen
how the links are defined. Now we see how they are put to use. The first step
is to peek at the next word in the input stream, then make predictions based
on that word. The idea is to look up each goal at the current position that
has the category of the first word as one of its subgoals and use these two
pieces of information to make new chart entries that link to the main goal.
There are several tasks to be completed. This predicate simply orchestrates
the predicting process. It calls predicates that do the predicting.

predictor(Position) :-
chart (Position,_,_, [Goall|_]),
c(Position,_,W),
predict(W,Goal,Position),
fail.

predictor(_).

4.4.1 predict(+W,+Goal,+Position)

Make predictions based on the current word.
If the current goal is the category of the current word, then there are no
more predictions to make.

predict(W,Cat,_) :-
word(Cat,W),!.

Otherwise use the category of the current word to restrict predictions. Pre-
dictions need to be made that link the current word to the current main
goal. predict_all/3 is called to make these predictions.

predict(W,Goall,Position) :-
word(Cat,W),
predict_all(Goall,Cat,Position),
predict (W,Goall,Position),
fail.

predict(_,_,_).

4.4.2 predict_all(+Goal,+Category,+Position)

This predicate finally makes all the predictions for the given input category.
It is a type of left—corner parser with links inspired by one proposed by Leiss
(1990). It stops making predictions when the current goal is the same as the
category of constituent it is looking for. Otherwise it finds rules whose first
subgoal is the current category, checks to make sure there is a link between
the goal it found and the current main goal, then enters the appropriate chart
entry into the knowledge base.

predict_all(Goal,Goal,_).

predict_all(Goall,Cat,Position) :-
rule(Goal, [Cat|T]),
1(Goal,Goall),
store(chart (Position,Position,Goal, [Cat|T])),
predict_all(Goall,Goal,Position).

The predicate also makes sure it did not miss a null constituent when
it looked at the first word. It checks the second subgoal of each rule for
a constituent of the current category. If it finds one, it checks if the first
subgoal can be a null constituent. If it can it makes sure there is a link
between the main goal and the proposed goal, then enters the appropriate
information in the chart. At this point it also needs to call the completer
since it knows it completed a null constituent.

10

predict_all(Goall,Cat,Position) :-
rule(Goal, [D,Cat|T]),
rule(D, [1),
1(Goal,Goall),
store(chart (Position,Position,Goal, [D,Cat|T])),
predict_all(Goall,Goal,Position),
store(chart(D,Position, [],Position)),
complete(D,Position,Position).

4.5 scanner(+End,-End2)

The scanner actually eats the next word in the input stream. To do this it
looks up each word that begins at the current point in the input stream. If
the word is of the same type as the first current subgoal, then the parser
asserts a new chart entry with updated information. The new chart entry
reflects the state of the parser after it has consumed the word it was looking
at.

scanner (End,End2) :-
chart (End,Start,C, [G|Goals]),
c(End,End2,Word) ,
word (G,Word),
store(chart (End2,Start,C,Goals)),
fail.

The scanner returns the input position after accepting the word it was looking
at.

scanner (End,End2) :-
End2 is End+1.

4.6 completer(+Position)

The completer looks for chart entries that have no subgoals left to process.
For each one it finds, it tries to use that chart entry to complete higher goals.

completer(Position) :-

chart (Position,PC,C,[]),
complete(C,PC,Position),

11

fail.

completer(_).

4.6.1 complete(4+Constituent,+Start,+End)

This predicate actually completes subgoals. The completer has just found a
completed constituent. So now it can find chart entries that have subgoals
with one subgoal left to complete. Advance one step in the input string and
update the goal list to reflect another subgoal processed. Assert this change
as a chart entry.

complete(C,PC,Position) :-
chart (PC,PC0,CO, [C|Goals]),
store(chart (Position,PC0,C0,Goals)),

Goals == [],
complete(CO,PCO,Position),
fail.

complete(_,_,_).

5 Utilities

It is fairly easy to access parse trees if the rules of the grammar have ar-
guments on their nodes. Here are two predicates that retrieve all of the
completed constituents from the parse.

5.1 get_constituents(4Constituent,+Sentence)

This predicate is called just like parse/2. It parses a sentence then prints
out all of the completed constituents from the parse.

7- get_constituents(s(X), [the,dog,chases,the,cat]).
s(np(d(the), n(dog)), vp(v(chases), np(d(the), n(cat))))
vp(v(chases), np(d(the), n(cat)))

np(d(the), n(cat))

np(d(the), n(dog))

12

X = s(np(d(the), n(dog)), vp(v(chases), np(d(the), n(cat))))

5.2 get_constituents_list(+Con,+Sen,-List)

This predicate is the same as above except that instead of printing the con-
stituents, it returns them in a list.

7- get_constituents_list(s(X), [the,cat,chases,the,dog],List).

X = s(np(d(the), n(cat)), vp(v(chases), np(d(the), n(dog))))
List = [s(np(d(the), n(cat)), vp(v(chases), np(d(the),
n(dog)))), vp(v(chases), np(d(the), n(dog))),

np(d(the), n(dog)), np(d(the), n(cat))] ;

No

6 Limitations

This algorithm was meant to improve upon another, and hence overcome
many of its limitations. There are however a few improvements that could
be made to this version.

It was a design decision not to store part of the chart in a list. Having
some chart entries in the list might complicate the code somewhat, but may
allow for better parsing in some cases.

This parser does not implement restriction.® This is not seen as a big
limitation, since restriction is used to solve a very particular problem with
Earley parsers. Fixing the problem would mean a less efficient parser. A
trade-off had to be made.

References

Covington, Michael(1994a) Natural language processing for Prolog
programmers. Englewood Cliffs, N.J.: Prentice Hall.

3See Covington (1994a, 186-187) for an explanation of this concept.

13

Covington, Michael (1994b) GULP 3.1: An Extension of Prolog for
Unification-Based Grammar. Research Report AI-1994-06, Artificial
Intelligence Center, The University of Georgia.

Earley, Jay (1970) An efficient context-free parsing algorithm.
Communications of the ACM, 13:94-102.

Gazdar, Gerald and Chris Mellish (1989) Natural language processing in
Prolog: an introduction to computational linguistics. Wokingham:
Addison-Wesley.

Leiss, Hans (1990) On Kilbury’s modification of Earley’s Algorithm. ACM
Transactions on Programming Languages and Systems, 12:610-640.

Princeton (2003) WordNet 1.7.1. http://www.cogsci.princeton.edu/~wn/.

Schlacter, Jason (2003) ProNTo_-Morph: Morphological Analysis Tool.
University of Georgia. http://www.ai.uga.edu/mc/ProNTo.

14

