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Abstract

This working paper reports the results so far of the ARC Project (Architecture Represented
Computationally), whose goal is to reproduce in computer form the architectural historian’s
mental model of the Gothic cathedral. In addition to being major monuments of cultural
heritage, Gothic cathedrals are particularly well suited for logical analysis because they have
a definite logical structure and a definite set of component parts.

The ARC software system, still in its infancy, is the result of close collaboration between
architectural historians and artificial intelligence researchers. It is designed to accept rep-
resentations written in a subset of English and translate them into the logic programming
language Prolog, then perform reasoning to draw conclusions about the structure of the
cathedral being described.

Résumé en français

Ce rapport de recherche décrit les derniers résultats du projet ARC (Architecture Repre-
sented Computationally), un projet visant à reproduire par ordinateur le modèle visuel et
mental produit par un historien d’art lorsqu’il décrit une cathédrale gothique dans un récit
ou une analyse architecturale. La construction des cathédrales gothiques représente un fait
majeur dans l’histoire de l’architecture et l’importance de ces bâtiments est un fait établi.
De plus, la cathédrale gothique présente aussi un aspect qui en fait un sujet particulièrement
bien adapté pour une analyse logique. Son architecture est en effet structurée suivant une
méthode logique et ses composants architecturaux forment un ensemble clairement défini.

Le logiciel ARC, encore en phase initiale, est le fruit d’une collaboration étroite entre
historiens de l’architecture et chercheurs en intelligence artificielle. Ce logiciel acceptera
des descriptions utilisant un sous-ensemble de la langue anglaise afin de les traduire en
langage de programmation Prolog pour ensuite raisonner et tirer des conclusions concernant
la cathédrale en question.
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Chapter 1

Overview of the ARC system

1.1 Introduction

The ARC project (for Architecture Represented Computationally) is designed to assist ar-
chitectural historians and others with the task of gathering and using information from
architectural descriptions.1 The architectural historian is confronted with an overwhelming
amount of information. Even if we restrict ourselves to Gothic architecture (our primary
area of interest), any given building has probably been described dozens, if not hundreds, of
times. These descriptions may have been written in different time periods, using different
vocabularies, and may describe the same building during different stages of construction or
renovation. Descriptions may be incomplete or even contradictory. An architectural histo-
rian should be able to extract necessary information about a building without encountering
anything contradictory or unclear.

To facilitate information gathering, the ARC research group propose a logic-based knowl-
edge representation for architectural descriptions. Descriptions of various cathedrals would
then be translated into this representation. The resulting knowledge base would be used
to give intelligent responses to queries, identify conflicts among various descriptions, and
highlight relationships among features that a human reader might have missed.

1.2 Why Gothic?

In addition to being major monuments of cultural heritage, Gothic cathedrals are particularly
well-suited for logical analysis. The structure of Gothic follows a logical form. Despite
variations, Gothic cathedrals present a number of typical features, such as pointed arches,
flying buttresses, and a plan on a Latin cross (Figure 1.1). The repetition of elements like
columns and vaulting units allows for more succinct logical descriptions (Figure 1.2). And
the historical importance of Gothic means that a wealth of detailed descriptions exist from
which we can build our knowledge base.

1This chapter draws heavily on the author’s previous work in [Hollingsworth2011].

4



Figure 1.1: Example of a cathedral ground plan (Chartres, France), from [Viollet1854]

The study of Gothic cathedrals is also important for cultural preservation. Some cathe-
drals have been modified or renovated over the years, and their original forms exist only
in descriptions. And tragedies such as the 1976 earthquake which destroyed the cathedral
in Venzone underscore the importance of architectural information. A usable and versatile
architectural knowledge base would greatly facilitate the task of restoring damaged buildings.

1.3 Outline of the ARC system

The outline of the ARC system is the result of close collaboration between architectural
historians and artificial intelligence researchers. While the system is still in its infancy, the
complete ARC system will have three distinct modes of interaction, to be used by three
different types of user. We will refer to these modes as superuser mode, administrator mode,
and user mode. The superuser mode will be used to write and edit a generic model for
Gothic architecture that will serve as background information prior to dealing with any
specific descriptions. The administrator mode will be used to enter the details of particular
buildings. The purpose of the user mode will be to allow end users to submit queries to the
knowledge base.
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Figure 1.2: Nave of Notre Dame de Paris, showing the repetition of elements. (Photograph
by S. Van Liefferinge)

1.3.1 Superuser mode

A small set of superusers will be able to create and edit the generic model of a Gothic cathe-
dral. This will consist of information about features generally considered typical of Gothic
(such as the cruciform ground plan and use of pointed arches) as well as more common-sense
information (such as the fact that the ceiling is above the floor). These are facts that are
unlikely to be explicitly stated in an architectural description because the reader is assumed
to know them already. Individual descriptions need only describe how a particular building
differs from this generic model. The generic model will be underdetermined, in that it will
remain silent about features that vary considerably across buildings (such as the number of
vaulting units in the nave).

The generic description will be written in ARC English, a small subset of English specif-
ically designed for capturing information about the structure of Gothic cathedrals, and
translated into the logical programming language Prolog. The goal is not a complete im-
plementation of English semantics, but rather a form of natural language programming, in
which the computer is able to extract its instructions from human language. Anyone reason-
ably familiar with architectural technology should be able to work on the generic description
in ARC English without the steep learning curve of a programming language. An example
of ARC English code is given in Figure 1.3.

1.3.2 Administrator mode

The administrator mode is used to input information about particular buildings, as opposed
to Gothic cathedrals in general. When an administrator begins an interactive session, the
generic model designed by the superuser is first read into the knowledge base. The admin-
istrator simply describes how the particular cathedral in question differs from the generic
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A column is a type of support. Every
column has a base, a shaft, and a cap-
ital. Most columns have a plinth. The
base is above the plinth, the shaft is
above the base, and the capital is above
the shaft. Some columns have a neck-
ing. The necking is between the shaft
and the capital.

Figure 1.3: Sample listing of ARC English.

model, using the same architectural description language. We would also like for the admin-
istrator mode to accept real-world cathedral descriptions in natural language rather than
ADL. This is a nontrivial task, and complete understanding is likely a long way away. In
the short term, the system should be able to scan a description, identify certain salient bits
of information, and allow the administrator to fill in the gaps as needed. To illustrate the
problem of understanding real-world descriptions, we present the following excerpt from a
description of the Church of Saint-Maclou:

The nave arcade piers, chapel opening piers, transept crossing piers, and choir
hemicycle piers are all composed of combinations of five sizes of individual plinths,
bases, and moldings that rise from complex socles designed around polygons
defined by concave scoops and flat faces. All the piers, attached and freestanding
on the north side of the church, are complemented by an identical pier on the
opposite side. However, no two piers on the same side of the church are identical.
[Neagley1998] p. 29.

There are important similarities between this description and our own architectural descrip-
tion language. We see many key entities identified (nave arcade piers, chapel opening piers,
etc.), as well as words indicating relationships between them (composed, identical, etc.)
Even if complete understanding is not currently feasible, we could still use techniques such
as named entity extraction to add details to our model.

1.3.3 User mode

The user mode will consist of a simple query answering system. Users will input queries such
as “How many vaulting units are in the nave at Saint-Denis?” or “Show me all cathedrals
with a four-story elevation.” The system will respond with the most specific answer possible,
but no more, so that yes/no questions might be answered with “maybe,” and quantitative
questions with “between four and six”, depending on the current state of the knowledge base.
Unlike web search engines, which only attempt to match particular character strings, our
system will have the advantage of understanding. Since descriptions are stored as a logical
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knowledge base rather than a string of words, we can ensure that more relevant answers are
given.

1.4 Outline of the thesis

Chapter 2 will give a review of previous work relevant to the ARC project, and demonstrate
the unique contributions this project makes. Chapter 3 details the knowledge representation
used in ARC: how architectural features are represented in the Prolog knowledge base,
and how inferences are derived from them. Chapter 4 describes ARC English, the natural
language programming system that uses a specialized subset of English to write architectural
descriptions. Finally, chapter 5 gives some suggestions for further research.
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Chapter 2

Related work

2.1 Logic and architecture

Perhaps the most important previous work in developing logical models for architecture was
[Mitchell1990]. This work introduced the concept of buildings having a logical structure, with
architectural forms following rules similar to the rules of grammar for natural languages. It
also described how concepts such as types, properties, and inheritance could be applied to
architectural description, and discussed the role of logical inference in architecture.

There have been a number of attempts at modeling architecture based on logical rules.
Yong Liu and others [Liu2008, Liu2010] used rules based on L-System grammars to represent
Chinese architecture. Wonka et al. [Wonka2003] designed a system for automatic modeling
of architecture using split grammars. However, neither of these approaches used a semantics
that was closely tied to natural language. Coyne and Sproat [Coyne2001] designed a system
that produced graphical models of scenes based on natural language descriptions. This
system was not specifically concerned with architecture, and its emphasis was on producing
graphical rather than logical representations.

2.2 Knowledge representation and logic programming

The knowledge representation presented in chapter 3 builds on much previous work in using
logic programming to capture English semantics. Of particular value was [BlackburnBos2005],
which gave a detailed account of expressing Montague semantics in the Prolog logical pro-
gramming language. This work aimed more at capturing the general semantics of English,
however, and was not particularly suited for an architecture-specific domain.

The knowledge representation used in ARC was influenced by discourse representation
theory, as presented in [KampReyle1993]. Several previous works on using DRT for knowl-
edge representation were useful, including [CovingtonNute1988], [CovingtonSchmitz1988],
and [Izzo1993].

Much use was also made of defeasible or nonmonotonic reasoning. A good overview of
this topic from a formal logic standpoint is [Antoniou1997]. The specific implementation of
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defeasible reasoning used, Donald Nute’s d-Prolog, was described in [CovingtonNute1997]
and [Nute2003].

2.3 Natural language programming

ARC English, the domain-specific subset of English presented in chapter 4, is an example of
natural language programming. Hugo Liu and Henry Lieberman have been among the most
prolific advocates of natural language programming, and several of their works were helpful.
[LiebermanLiu2005] presented a case study in which non-programmers (small children, in
fact) were asked to describe a simple video game in English. This work illustrated the
usefulness of natural language programming in helping non-programmers instruct computers.
In other works, these authors describe representing programs in a subset of natural language
[LiuLieberman2004, LiuLieberman2005].

The task of using unrestricted natural language (as opposed to a specialized subset) for
programming was described in [Vadas2005]. This work was particularly relevant because the
authors adopted discourse representation theory for their semantics. They used the freely
available C&C Parser to translate English sentences into discourse representation structures,
and then translating these into code. I opted not to use this technique, however, because the
general-purpose C&C Parser was unacceptably slow and did not always produce the best
discourse representations. A simpler, handwritten parser was used instead.

One of the more successful and well-developed implementations of natural language pro-
gramming to date was Graham Nelson’s Inform 7, a system for writing interactive fiction
(a genre of computer games also known as text adventures). These games take the form of
second-person narratives in which a variety of locations, objects and characters are described
to the player, who then issues instructions to the game in English. The motivations and out-
line of the Inform 7 system are presented in [Nelson2006]. This work was a great influence on
ARC English, as one of the primary tasks of interactive fiction—describing physical objects
and their properties—is also ARC’s goal. Nelson’s paper also helped inspire some of the
guidelines for natural language programming found in section 4.2.
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Chapter 3

Knowledge representation in the ARC
system

3.1 Introduction

Knowledge representation is at the heart of the ARC system. One of the distinguishing
features of ARC is that it produces building descriptions in the form of logical predicates,
as opposed to 3D models or other formats more commonly used with architecture. It is
therefore important that we determine exactly what information we wish to capture, and
how it is to be represented.

While architectural knowledge representation is not a simple task, certain features of
the domain make it less daunting than more general knowledge representation. Perhaps the
biggest simplifying factor is that buildings are more or less static objects. Were we describing
living agents, or even machinery, we would have to find ways to render action verbs, describe
change over time, and so forth. Buildings, however, can be treated as “frozen” in a moment
of time. While buildings do change over time, with features being added or removed, the
change is gradual enough that we need not describe it as a temporal process. Instead, we can
treat various time-slices of a cathedral as complete and separate buildings—say, Chartres
Cathedral in 1260 versus Chartres Cathedral in 1325.

Without the need to describe change over time, our task is reduced to that of naming
the entities that make up a cathedral, and describing their properties and how they relate
to each other. Nevertheless, there are a number of issues that must be resolved before we
can produce a logical representation of a cathedral. The following sections address a few of
these issues.

3.2 Referencing entities

Before we can go about describing objects, we must first be able to refer to them. In
natural languages such as English, there are two main ways we can refer to something: by
a proper name (e.g., “Chartres Cathedral”), or by a common noun phrase (e.g. “the south
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transept”). For our purposes, proper names are of limited use. Indeed, the only object in a
Gothic cathedral that is likely to be referred to by a proper name is the cathedral itself. All
other objects will be referred to in terms of the type of object they exemplify, or the larger
features of which they form a part.

Fortunately, both types of names are easy to render in Prolog. Proper names correspond
to simple Prolog atoms, such as chartres or notre_dame_de_paris. Common names can
be represented as a Skolem function indicating the type of which an object is an instance,
the larger object of which it is a part, and an index: nave_inst(chartres,1) to refer to
the nave of Chartres, for example. Since the cathedral itself is the only proper name, it can
be treated as the top level, with all other objects being either parts of the cathedral as a
whole, or parts of those parts, and so forth.

The convention I have adopted for Skolemizing the names of entities is as follows: The
functor consists of the object’s type plus _inst (for “instance”). The first argument of the
Skolem function indicates the owner (the larger object of which this object is a part), and the
second argument is a numerical index. Thus vaulting_unit_inst(nave_inst(chartres,1),2)
refers to the second vaulting unit of the first (and only) nave of Chartres Cathedral. Skolem
functions are recursive, and any object’s Skolem function describes the entire chain of own-
ership all the way up to the cathedral itself.

Skolem functions may seem unwieldy, but as they are generated automatically by the
software the user need not deal with them directly. Having a systematic way of generating
the names of objects in fact makes things easier on the user, as it prevents him or her from
having to come up with a unique name for each object in the cathedral.

It should be noted that any Skolem function that follows this format is valid, even if it
refers to an absurd object. Thus triforium_inst(nave_inst(amiens,23),17) is a valid
object name, though it makes no sense to speak of the seventeenth triforium of the twenty-
third nave of Amiens. The ability to refer to objects that may not in fact exist is useful
in dealing with the architectural equivalent of “donkey sentences”: we want to be able
to say things like “For every column that has a necking, the necking is above the shaft.”
Representing this sentence logically requires us to say something about the relationship
between an instance of “necking” and an instance of “shaft”, though the former does not
exist for every column.

3.3 Types

The set of types is fixed, and should correspond more or less to the list of entries in any
decent glossary of Gothic architectural terms: nave, transept, column, vaulting unit, and
so forth. Types are implemented as one-place predicates; thus if we wanted to assert that
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Colin is a column, we would assert column(colin).1 In this respect, types are similar to
properties (as described in section 3.4).

Types differ from properties, however, in that the former have the capability of bestowing
existence on entities. As explained in section 3.2, any Skolem function of the proper form
is a valid name. What separates a real entity like the nave of Saint-Denis from a nonsense
entity like the twenty-fourth clerestory of Chartres is that the knowledge base will contain
a type assertion of the former: nave(nave_inst(saint_denis,1)). The knowledge base
also contains a list of all the valid types, so that in order to find out which objects actually
exist, we simply run through the list of types and query each one to find out what entities
of that type exist. This feature will be very useful when we are trying to discover whether
our knowledge base is complete.

3.4 Properties and attributes

Attributes can be thought of as adjectives, which either do or do not describe a given object.
They correspond to Boolean values or one-place Prolog predicates, and can describe the color,
shape, material, or other features of an object. For example, engaged(colin) indicates that
Colin the column is an engaged column, and wood(doris) indicates that Doris the door is
made of wood.

Of course, treating each adjective as a boolean value has its limits. We might also like
to have something like the enumerated types found in some programming languages, where
we can define a many-valued property called color which can have values such as red or
green. Thus to say that Colin is green we would assert color(colin,green). But in
fact these two approaches need not be mutually exclusive. We can make assertions of the
type green(colin), but make sure our knowledge base contains a set of rules like those in
figure 3.1:

color(X,green) :-

green(X).

color(X,blue) :-

blue(X).

color(X,red) :-

red(X).

Figure 3.1: Creating properties from various attributes

1As stated above, only the cathedral itself will be called by a proper name. However, in the examples
I will sometimes use proper names, such as Colin the column or Vernon the vaulting unit, to avoid having
to type out a long Skolem function. Once again I remind the reader that the user will never need to enter
Skolem functions by hand, so their unwieldiness is not a hindrance to usability.
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Even better, rather than laboriously enumerating the rules by hand, we could do some-
thing like figure 3.2:

color_value(green).

color_value(red).

color_value(blue).

color(X,Color) :-

color_value(Color),

Functor =.. [Color,X],

call(Functor).

Figure 3.2: More elegant code for creating properties

Thus we can make simple assertions like green(colin) while still being able to submit
queries such as color(colin,X).

3.5 Relations

Where properties correspond to one-place predicates, relations correspond to two-place pred-
icates. They represent various relationships between two entities, such as spatial relation-
ships (above, below), relations of ownership (has), or functional rellationships (supports,
crosses). Thus above(colin,herbert) signifies that Colin is above Herbert, while has(colin,
plinth inst(colin,1)) signifies that colin has a plinth.

In order for our queries to return the desired results, the knowledge base will need to
contain certain rules for making inferences about relations. For example, some relations are
the inverse of others: if X is above Y, then necessarily Y is below X. Relations can also be
transitive: if we know that X is above Y and Y is above Z, we know that X is above Z.

The “above” relation is an example of a partial ordering, which is a particularly common
kind of relation for describing the spatial arrangement of objects. Other partial ordering
relations might include “left of,” “right of,” “behind,” and so forth. These relationships
are transitive, nonreflexive (nothing is above itself), and antisymmetric (if X is above Y, Y
cannot be above X).

Care must be taken when adding statements to the knowledge base not to violate the
properties of relations. That is, if we have previously asserted that the shaft is above the
plinth and the capital is above the shaft, we cannot subsequently assert that the plinth
is above the capital without violating antisymmetry. To ensure this, rather than adding
facts to the knowledge base directly using Prolog’s assert predicate, we must implement
an assert_if_consistent predicate that tests an assertion to see if any violations of the
relation’s properties would result, adding it to the knowledge base only if no violations are
found.
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The task of checking for contradictions is complicated somewhat by the fact that we
are typically not asserting that a singular object is above or to the left of another singular
object. When we say “the capital” is above “the shaft,” we mean that, for each column,
that column’s capital is above that column’s shaft. Thus instead of asserting a simple fact
like above(capital,shaft), we would need to assert a rule such as that in figure 3.3.

above(X,Y) :-

column(Z),

has(Z,X),

has(Z,Y),

capital(X),

shaft(Y).

Figure 3.3: Prolog representation of “The capital is above the shaft”

In other words, if X and Y both belong to the same column, and X is a capital and Y is
a shaft, then X is above Y. Thus when checking for the consistency of an assertion of this
type, we cannot just search the existing facts in the knowledge base to see whether any of
them directly contradict our assertion. Instead, we need to add our rule to the knowledge
base, systematically test its consequences (by querying above to get an exhaustive list of
what is above what), and then retract the rule if a contradiction is found.

Another complication stems from the inductive nature of definitions of partial ordering
relations. For example, the ancestor predicate that is encountered in introductory Prolog
courses has a two-part definition. The first part is the base case: if X is the parent of Y,
then X is the ancestor of Y. The second part is the inductive step: if X is the parent of Z
and Z is the ancestor of Y, then X is the ancestor of Y. Thus the definition of ancestor
depends on the existence of another predicate, parent, which is a special case of the former
(the “immediate ancestor”). When the knowledge base is built, one would simply assert who
is the parent of whom, and the more general ancestor relations would be derived from this
knowledge.

Unfortunately, natural language does not always preserve the distinction between the
more general relations and the particular, immediate relations. An English-language de-
scription of a column, for example, might say “The shaft is above the plinth, the necking
is above the shaft, and the capital is above the necking.” It is never explicitly said what is
immediately above what, though the reader probably assumes that the shaft is immediately
above the plinth and so forth. However, nothing prevents us from saying something like
“The capital is above the plinth.” We need to be able to assert that one object is above
another without any definite commitment as to whether or not this relation is immediate.
To accomplish this, we can make use of defeasible reasoning (about which more is said in
section 3.6. If one object is asserted as being above another, we will consider it defeasibly
true that it is immediately above it (provided we do not already know of objects lying be-
tween the two). This assertion is defeated as soon as another object is asserted to be below
the former but above the latter.
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3.6 Specific versus Generic Descriptions

A complete description of a cathedral would consist of the set of all and only those propo-
sitions that hold true for that cathedral. These propositions would include those properties
possessed by each entity, and those relations held by each pair of entities. Since the knowledge
base contains lists of all properties and relations, a complete description could be produced
simply by querying each entry in those lists.

However, only a description of a specific cathedral can be complete. The generic descrip-
tion that is defined in superuser mode is necessarily incomplete. Since it represents only
the features common to all Gothic cathedrals, it must be mute regarding any features that
differ from cathedral to cathedral. Or, if not mute, at least not inflexible. In the generic
description, some facts will be said to hold most of the time, others only rarely.

Thus while a specific cathedral description can be implemented entirely in Prolog, we
need more expressive capability to render the generic description. For this I have chosen to
use d-Prolog, Donald Nute’s implementation of defeasible (or non-monotonic) reasoning in
Prolog. In addition to normal Prolog rules, d-Prolog allows for defeasible rules (rules that
apply most of the time, unless defeated by a stronger rule) as well as explicit negation (rather
than simply negation-as-failure). Thus if we wanted to say that “most columns are round,”
we could assert the defeasible rule round(X) := column(X), which would be defeated if our
knowledge base contained the strict facts column(colin) and neg round(colin).

Conflict between defeasible rules (when a given rule is both defeasibly true and defeasibly
false) can be minimized because of the hierarchical nature of the knowledge base. Every en-
tity must belong to a type or a subtype, and the rules defining subtypes (such as support(X)
:- column(X), “all columns are supports”) are all strict rules. d-Prolog allows us to assume
that more specific rules are superior to more general rules, so that a defeasible rule about
columns would overrule a contrary defeasible rule about supports.

Even with the specificity condition, it is still possible for two defeasible rules to conflict
if neither is more specific. This is not necessarily a bad thing, because it can tell us whether
a given description is sufficiently detailed. If a purportedly complete cathedral description
does not contain enough information for our inference engine to determine the truth of a
given claim, an architectural historian reading the description might not be able to do so
either.

It is not just the properties of, and relations between, entities that vary from cathedral
to cathedral. Different cathedrals contain different sets of entities. A cathedral may or
may not have a triforium, there may be different numbers of vaulting units in the nave,
columns may or may not have neckings, and so forth. We need a way to say that cer-
tain entities might or might not exist. Fortunately, this is not difficult. Recall that most
entities are identified by Skolem functions, but a given Skolem function is not taken to
refer to an actually existing entity unless it has been assigned to a type. A rule such as
triforium(triforium_inst(X,1)) := cathedral(X), literally “For most cathedrals there
exists a triforium”, can still be defeated if we know that a particular cathedral has no trifo-
rium. Entities can thus be asserted into and out of existence; with apologies to Immanuel
Kant, in ARC, existence is a predicate.
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Entities whose numbers may vary are also easy to implement. To say that a nave has
between five and seven bays, we would assert the existence of bays one through five using
strict rules, and bays six and seven with defeasible rules. Finally, we would include a rule
explicitly negating the existence of any bays with index greater than seven.

Another advantage of using defeasible reasoning is that it can help with the extraction of
information from real-world descriptions. By using d-Prolog’s @ operator to query the various
types, properties, and relations, we can find out what information about the cathedral is
known for certain and what is still doubtful. We can then mine real-world descriptions for
unknown information, or for potential defeaters of facts that are only defeasibly true. For
example, if we cannot prove whether or not a given cathedral has a triforium, this tells us we
need to search the cathedral description for any mention of a triforium. Or, if we know that
most columns have neckings, we can search to see if any columns are explicitly mentioned as
lacking neckings. By searching only for those things about which we are in doubt, we avoid
having to interpret and understand every sentence of a description.
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Chapter 4

ARC English: Natural-language
programming for architectural
knowledge

4.1 Natural language programming

Natural language programming (not to be confused with natural language processing) refers to
the use of natural language, rather than a formal programming language, to issue instructions
to a computer. While some programming languages, such as COBOL or Applescript, are
superficially similar to natural languages, they still have the strictly limited syntax and
vocabulary typical of traditional programming languages. Natural language programming,
on the other hand, suggests interacting with computers in true natural language.

In natural language programming, programming takes place in a true subset of a natural
language. This means that programming language staples like curly braces, reserved words
(such as “printf”), and other features not found in natural language should not be required
in natural language programming. Vagueness and ambiguity should be tolerated, so that
information that would need to be provided explicitly in a traditional programming language
can be left out with no effect on performance. Any given concept or instruction can usually
be expressed a number of different ways. As a result, much more processing is required of
the computer than with traditional programming languages. However, less effort should be
required on the part of the human programmer.

Architectural description is not the same as programming. Whereas a program is a set
of instructions for the performance of a task, an architectural description simply details the
properties of physical objects. Nevertheless, there are enough similarities for a comparison
between architectural description and natural language programming to be useful. Since
the architectural description language used in the ARC project will ultimately be translated
into a logical knowledge base, our task could be considered a form of natural language logic
programming.
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4.2 Some guiding principles for architectural natural

language programming

At this point it is important to review some of the goals of the ARC project. We want
it to be used by architectural historians and others who will not necessarily have a strong
background in formal logic or computer programming. We want to be able to describe
the mental model of a Gothic cathedral that such historians possess, that allows them to
understand architectural descriptions. They must therefore be able to add facts to the
knowledge base as easily and as naturally as possible, as though they were simply giving
a verbal description. Once our generic model is complete, we want to be able to model
particular cathedrals based on real-world architectural descriptions. The language in which
the generic model is written should not be vastly different from that of other architectural
descriptions.

The following are some guiding principles that will help us achieve these goals.

• It is up to the computer to figure out what the user means, rather than up to the user
to figure out what the computer wants to hear. Since our target user base consists of
non-programmers, they should not be required to learn a new programming language.
Nor should they be expected to spend a lot of time trying to figure out how to express
some concept so that the computer will accept it.

• There should be no “syntax errors” or invalid inputs. Nothing that is accepted in
natural language should be rejected by the computer. This includes typographical
errors and other small mistakes that people can easily cope with. When the user’s
input is such that the computer cannot even make a guess as to the intended meaning,
the computer should not simply declare that an error has occurred. Rather, it should
attempt to elicit clarification, perhaps by asking the user to rephrase or suggesting
alternate phrasings.

• More than one input string can correspond to the same output. For example, “A column
is a type of support,” “All columns are supports,” and “Every column is a support”
all correspond to support(X) :- column(X).

• The same input string might represent more than one output. The sentence “All
columns are supports” might have different interpretations, depending on context:
does it mean all columns, everywhere, or all columns in the nave (or whatever part of
the cathedral is being discussed)?

• The computer should be able to figure out what to ignore. Most programming language
have special punctuation or syntax that separate comments from code. In natural
language, however, authors might make an aside or offer inessential information without
clearly delineating it as such. The computer should be able to ignore unimportant
words and extract what is needed. In the architectural domain, this might mean
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skipping over historical or sociological notes and concentrating solely on structural
information.

• Syntax and vocabulary should not be fixed. The parser should not have a predefined
vocabulary list detailing which words are or are not acceptable. Instead, the users
should be able to add vocabulary from within the language itself, for example by
saying “A ‘column’ is a type of support.”

Furthermore, the parser should be able to incorporate novel types of sentence structure
into its rules. For example, suppose the user enters the unknown sentence, “For every
column there is a capital.” The computer might ask the user to rephrase, at which
point the user enters the understood sentence “Every column has a capital.” A new
rule might then be added to the parser, so that future sentences of the form “For every
X there is a Y” are interpreted as “Every X has a Y”.

4.3 ARC English

The natural language programming environment I have developed for the ARC project is
known as ARC English. This is a true subset of English used for expressing information about
the structure of Gothic cathedrals. While ARC English does not contain every sentence
that would be found in a real-world architectural description, every relevant fact about the
structure of a Gothic cathedral should be expressible in ARC English. The primary use of
ARC English will be for writing the generic cathedral description in superuser mode.

The built-in vocabulary of ARC English is very small, and consists almost entirely of
function words (“is”, “has”, “every”, “some”, and so forth). No architectural terms are built
in, because they are to be defined within ARC English itself, through statements such as
“A ’column’ is a type of support.” This gives the superuser complete freedom in writing the
generic description, and means that this description will contain human-readable definitions
of all architectural terms. The limited built-in vocabulary would also make the task of
internationalization simpler, should we someday wish to implement ARC French or ARC
German.

Descriptions written in ARC English are translated into Prolog statements. The SWI-
Prolog program for making this translation consists of a tokenizer and a parser, the latter
implemented mainly through DCG rules. Using SWI-Prolog’s module system, we can main-
tain two separate knowledge bases: the parser knowledge base, which contains the parsing
rules; and the target knowledge base, which contains the rules that are produced as a result
of the translation. For example, to process the ARC English statement “’Colin’ is a col-
umn,” which introduces the proper name Colin as referring to an entity of the column type,
the parser would do two things. First, it would add a rule to the parser’s knowledge base
declaring ’Colin’ to be a proper noun, so that any future occurrences of the term ’Colin’
would be recognized as such. Second, it would add the rule column(colin) to the target
knowledge base, declaring Colin to be a column.
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The following subsections give a detailed outline of the syntax of ARC English that has
been developed so far.

4.3.1 Types

As mentioned above, the ARC English parser is equipped with a minimal vocabulary. At
first, the list of types is empty. The user must issue type definitions, either for top-level types
or subtypes. To define a top-level type, simply say {Indefinite article} {type name}
is a type. (For example, A support is a type.) To define a subtype, say {Indefinite
article} {subtype name} is a type of {type name}. (e.g., A column is a type of

support.)
When a type or subtype is defined, its name is added to the lists of types in both the parser

knowledge base and the target knowledge base. When a subtype is defined, an additional
rule is added to the target knowledge base expressing the subtype relationship. For the above
example, A column is a type of support, the rule support(X) :- column(X) would be
added.

The addition of a new type or subtype also occasions the addition of a rule to the parser
knowledge base defining the plural of that type name. At present, the default is simply
to define the plural as the singular plus ‘s’, though rules to handle other regular plurals
might be added. Because this rule does not work for every type name, the user can override
the default plural by saying '{Plural form}'is the plural of '{type name}'. (e.g.,
'Triforia'is the plural of 'triforium'.)

To establish the existence of an entity identified by a proper name, one would write
{Proper name} is a {type}. (For example, Colin is a column.) This would add the
given name to the list of proper names in the parser knowledge base, and add the rule
column(colin) to the target knowledge base.

Finally, sentences of the form Every {type} has a {type} or Every {type} has {number}
{plural type} (e.g., Every column has a shaft or Every vaulting unit has four columns)
establish both existence and ownership of type members. This type of sentence is used for
entities identified by Skolem functions rather than proper names, since those entities can
only be identified by their type and owners. Every column has a shaft adds two rules to
the target knowledge base (figure 4.1).

shaft(shaft_inst(X,1)) :- column(X).

has(X, shaft_inst(X,1)) :- column(X).

Figure 4.1: Prolog representation of “Every column has a shaft”

The first rule establishes the existence of a shaft instance for every column, while the
second establishes that said shaft instance belongs to that column. Note that we have not
yet declared the existence of any shafts! Only if at least one column is known to exist would
these rules establish the existence of a shaft.
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4.3.2 Properties and attributes

To declare a new attribute, we need only say '{Attribute}'is an attribute. This adds
the name of the attribute to the lists of possible attributes in both the parser and target
knowledge bases. Once an attribute has been defined, it can be assigned to entities. For
example, Colin is a column. 'Red'is an attribute. Colin is red.

Properties are similarly defined: '{Property}'is a property. Properties range over
attributes, and there are many possible ways to express the relationship between a property
and its attributes. The following are equivalent:

• 'Color'is a property whose attributes are red, green, and blue.

• 'Red', 'green', and 'blue'are attributes. The property 'color'comprises

red, green, and blue.

• 'Red', 'green', and 'blue'are attributes. 'Color'means red, green, or blue.

A statement of the form Every {type} has the property {property} indicates that
every entity of the given type must possess exactly one of the attributes belonging to
{property}. For example, Every door has the property color means that every object
of type door must possess one of the attributes red, green, or blue.

4.3.3 Relations

Relations in ARC English correspond to prepositions or preposition-like phrases in English.
Examples include “above,” “below,” “in front of,” “to the left of,” “in,” “beside,” and
so forth. They are translated into Prolog as two-place predicates whose arguments are
both entities, and they indicate some sort of relationship between the two entities. These
relationships are typically, though not necessarily, spatial.

Relations can also have properties, similar to mathematical relations. Such properties
might include symmetry, transitivity, reflexivity, or the inverses of these. A relation is defined
through a sentence of the following type: '{Relation name}'is a {list of properties}
relation. For example, 'Above'is a transitive, irreflexive, antisymmetric relation.

Relations can have an opposite, as with above and below. To define opposites, one
simply says 'Below'is the opposite of 'above'.

Recall that in section 3.5 we found that many relations have both an immediate form
(such as the parent relation) and a more general form (such as the ancestor relation).
Whenever a new relation is defined, it will be assumed to be a general relation, and its
immediate form is assumed to have the same name, prefixed by immediately. So, for
example, when we define above, we also define immediately above. It may be desirable to
override this, allowing us to say, e.g., 'Atop'is the immediate form of 'above'.

It is not yet clear whether we need the capability to restrict the domains of relations. So
far we have assumed that any entity can potentially relate to any other. But it makes no
sense to say that the triforium is to the left of the clerestory, or that the nave is inside some
column’s plinth. We might want to be able to say something like 'Above'is a relation
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between parts of a column and so forth. However, implementing this feature would add
considerable complexity at questionable benefit, since the superuser would be unlikely to
make such category mistakes.

4.3.4 More complex determiner phrases

So far we have only seen how attributes are given to objects in the special case of proper
nouns, e.g. Colin is round. But recall that only the cathedral as a whole is likely to be
given a proper name. Other entities will only be referred to in terms of their type, owners,
or other properties. An example of this type of reference was given earlier in introducing
the has operation: Every column has a capital. We can assign attributes the same way:
Every column is red.

But what if we don’t want to say something about every member of a type? Since
attributes correspond to adjectives, we can use them to select subsets of types. For example,
Every wooden door is red assigns the attribute red to only those doors that possess the
attribute wooden. Relations, which correspond to prepositions, can be used similarly: Every
column in the triforium is blue.

This last example introduces a very common determiner that is nevertheless particularly
difficult to implement: the. In the case of the triforium, of which there is going to be
at most one per cathedral, “the” triforium obviously has only one possible referent. But
consider the following code:

Every column has a shaft and a plinth. The shaft is above the plinth.

What are “the” shaft and “the” plinth? Here they do not refer to unique objects, as there
are many shafts and plinths in the cathedral. But they are introduced in the context of “every
column.” What we are really saying is something like “For each column, that column’s shaft
is above that column’s plinth.” The Prolog translation would be as in figure 4.2.

shaft(shaft_inst(X,1)) :- column(X).

plinth(plinth_inst(X,1)) :- column(X).

has(X, shaft_inst(X,1)) :- column(X).

has(X, plinth_inst(X,1)) :- column(X).

above(Y, Z) :-

column(X),

has(X,Y),

shaft(Y),

has(X,Z),

shaft(Z).

Figure 4.2: Prolog representation of “For each column...”

For each of these rules, the body of the rule essentially tells us what entities we are talking
about (every column, or each column’s shaft and plinth) while the head tells us something
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about those entities (that it has a shaft, that one is above the other). The list of entities
under discussion may persist from sentence to sentence. “The plinth” means “every column’s
plinth”, even though “every column” was introduced in a previous sentence. Our level of
analysis is not the isolated sentence, but the discourse as a whole.

To keep track of the entities under discussion, we should make nested lists as things are
named, and pass them on from sentence to sentence. For example, when the sentence “Every
column has a shaft and a plinth” is processed, the parser could pass the list [column(X),

[shaft inst(X,1), plinth inst(X,1)]] on to the next sentence. If that sentence men-
tions “the” shaft, the parser will first check the list that was passed to it to see if a shaft inst

appears in it. If one appears, the parser understands “the shaft” to refer to that shaft. If
more than one appears, the user is asked to clarify. If no shaft instance appears in the list,
the parser checks the knowledge base as a whole. (We need not pass an instance of nave, for
example, because there is only one nave per cathedral, so it is always clear what “the nave”
refers to.)

Finally, we need to draw a distinction between “each” and “every”. If the user makes a
statement about “every” column, this probably means all columns anywhere, and so “every”
is interpreted globally. If, on the other hand, the user mentions “each” column, this implies
that a certain group of columns has just been mentioned, and the statement applies only
to them. The parser would search the list of entities that was passed to it from the last
sentence in order to see whether any columns are mentioned.
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Chapter 5

Suggestions for further research

5.1 Space

So far it has been assumed that entities will be physical objects, such as columns and arches.
However, architecture is about space, and it is useful to be able to refer to empty spaces and
reason about them. We may think of the nave, for example, as being composed of columns
and vaults, but if I say I am standing in the nave, I mean I occupy an empty space that is
delineated by those objects.

As far as I can determine there is no “object-oriented” bias built into ARC English or
its knowledge representation. One should be able to declare spaces to be entities as easily
as one can declare objects to be entities, and assign them properties and relations just the
same. However, as the generic description is developed, it may be discovered that spaces
require special treatment. It may be useful to incorporate some insights from spatial logic,
a form of interval logic designed for reasoning about space [Randell1992].

5.2 Paraphrasing

Recall that in section 4.2, one of our goals was that the ARC English parser should not be as
restrictive as a traditional programming language, and that it should be able to understand
multiple phrasings of the same sentence. So far we have not met this goal, as the examples
given here still prescribe strict sentence forms. This situation can be improved by hand,
by adding new rules to the parser’s grammar. By having architectural historians test the
system, we can identify what types of input sentences they are likely to attempt to use that
are not already understood, and add rules for those sentences.

However, we do not want to have to enter rules for all possible input sentences by hand.
For one thing, it may be impossible to anticipate every way a user might express some bit
of information. For another, hand-coding rules puts all the power (and responsibility) of
improving the grammar in the hands of the programmer rather than the user. We already
have ways for the user to expand the parser’s vocabulary (through type definitions). Why
not allow the user to expand the parser’s grammar as well?
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One obvious way to do this is to understand novel sentences as paraphrases of already
valid sentences. For example, to tell the system that all members of a particular type have a
certain attribute, the canonical expression is “Every type is attribute.” For example, “Every
column is round.” But there are a number of obvious alternate ways to express this: “All
columns are round,” “Columns are round,” ”A column is round,” “Anything that is a column
is round,” “If something is a column, it is round,” and so forth.

Note that all of these sentences contain the words “column” (a type) and “round” (an
attribute), plus some function words. If we tell the system that all these sentences translate to
round(X) :- column(X), it should be able to figure out how to process all similar sentences.
The methods for doing so are simply those used in statistical machine translation, wherein
sentences of one language are identified as counterparts of sentences in another language.
Indeed, the task of interpreting ARC English can be seen as a machine translation task: we
are translating from a less restrictive subset of English (the sentences the user is likely to
enter) into a more restrictive subset (the canonical dialect of ARC English).1

5.3 Numerical values

The properties and attributes covered so far have allowed only Boolean or enumerated values.
However, it will be useful to allow numerical values as well. We do not simply wish to know
that the south spire of Chartes is “tall.” We want to be able to say that it is 103 meters high.
The most obvious way to do this would be to allow a new type of relation that corresponds
either to a two-place predicate (whose arguments are an entity and a numerical value) or
a three-place predicate (whose arguments are an entity, a numerical value, and a unit of
measurement).

Numerical values are probably more useful in dealing with specific cathedrals than with
our generic description, as there were not many Gothic architectural features that were built
to a standard size. As a result, the generic description will be more likely to contain com-
parative measurements like “taller than,” “half as long as,” and so forth. These comparative
statements can be translated into numerical constraints and added to the knowledge base.
SWI-Prolog includes modules for dealing with numerical constraints in both the real and
integer domains, and these should be sufficient for handling comparisons of the sort found
in the generic description.

5.4 Dealing with real-world descriptions

While descriptions of particular cathedrals could be added using the same ARC English
instructions as the generic description, our goal is to be able to extract this information
directly from real-world descriptions. This task might involve using machine translation
techniques to translate the unrestricted English descriptions into ARC English. However,
this is probably not the optimal approach, since such a system would need to be trained. A

1For a good overview of statistical machine learning techniques, see [Koehn2010].
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large corpus of English-language architectural descriptions would have to be assembled, and
then translated into ARC English by human experts. Furthermore, translating entire texts
would be redundant, as such texts typically contain historical or aesthetic details and other
information irrelevant to our task.

Fortunately, the nature of the ARC knowledge base suggests an approach for deciding
exactly what information needs to be extracted from the text. Recall that in section 3.6,
we saw that there is a systematic way of determining which facts about the cathedral are
known with certainty, and which are unknown, or only tentatively assumed. All we need is a
list of facts that we wish to know (the number of stories, the length of the nave, whether the
columns have neckings) and a way to identify statements of these facts in real-world texts.

One way to do this might involve simple pattern matching. For example, to determine the
number of stories in the elevation, a description could be searched for the phrase “{number}-
story elevation”. There are two problems with such an approach, however. One is that the
programmer will have to hand-code an exhaustive list of patterns to search for. The other is
that such a simple search might miss important details, like the presence of the word “not”
or the fact that the sentence in question was referring to a different cathedral.

A better plan might involve machine learning. Several architectural descriptions could
be studied by architectural historians, and passages that give facts about particular features
could be identified and annotated. A machine learner could then be trained to recognize such
sentences and the facts they describe. This method would require a corpus of architectural
descriptions, and a lot of laborious annotation. It would probably still be less laborious
than hand-coding all the rules. Both this approach and the hand-coded approach are likely
to have problems with accuracy, and so the extraction of information from real-world texts
should probably be supervised by architectural experts and not completely automated.

5.5 Responding to queries

Once the knowledge base has been filled with logical representations of various cathedrals,
we need a way to access the information. This will probably be done through a simple web
interface, in which questions such as “Which cathedrals have a three-story elevation?” or
“How long is the nave of Saint-Denis?” are entered in a text box. These would be translated
into Prolog queries and used to query the knowledge base. This task is similar to that of
natural language database querying, an area of active research [Popescu2003].
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