CORRECTIONS
(Revised 2009)

for

Natural Language Processing
for Prolog Programmers

by Michael A. Covington

Englewood Cliffs, NJ: Prentice Hall, 1994

Original content Copyright © 1994 Prentice-Hall, Inc.
Corrections Copyright © 2009 Michael A. Covington

This document contains a list of corrections to the book, plus a set of replacements for certain
pages, mainly those that have errors in diagrams.

The corrected pages can be printed out and attached inside your book in front of the pages that they
replace. Make sure your PDF printing software is set to print actual size rather than enlarging to fit
the paper.

This is a partial set of corrections and may be extended in the future.

Downloads for this book are now located at:
http://www.ai.uga.edu/ftplib/natural-language-book

Michael A. Covington
www.ai.uga.edu/mc
Revised February 10, 2009

Known errors in the first printing of

Natural Language Processing for Prolog Programmers
Michael A. Covington

Englewood Cliffs, NJ: Prentice-Hall, 1993 (1994)
ISBN 0-13-629213-5

Thanks to Mark Plaksin, Sven Hartrumpf, Benjamin Yuen,
Sebastian Varges, and others for pointing these out.

p. 7
p. 21
p. 32
p. 42
p. 44
p. 47
p. 149
p. 165

p. 170

"every verb has hundreds of forms"™ should read
"every verb has over 100 forms".

The printed text is correct, but the file 'dosengl.pl'
distributed with the book had some parentheses
missing in the definition of make_string/2, which
should read as follows:
make_string([H|T],Result) :-
name(H,Hstring),
make_string(T,Tstring),
append(Hstring,Tstring,Result).
make_string([],[1).
last paragraph: "four clauses" should be "five clauses".
Tine 5 from bottom: "looks as" should be "looks at".
caption to fig. 3.4: delete "or both".
(Actually, a grammar rule could change both things, but
there is no example of it here.)
para. 3: the "wrong" rule should actually be:
s --> np, { write(L2) }, vp. % WRONG!
[[agr:[person:2]]] should be [agr:[person:2]]
Tine 4, after "find them all." add footnote:

Sebastian Varges points out that the parser will also
Toop on a set of rules of the form:

S >XY
Y -> X
X ->0 (0 is null set symbol)

Although finite, this grammar has a troubling ambiguity
of a kind that apparently does not occur in natural
Tanguage: an empty constituent can occur either as an X,
or as a Y immediately following an X.

ex. 6.5.2.2: "first clause of chart" should be

"second clause of parse" (with 'parse'
in typewriter type).

. 206 ex. 7.3.2.1: "both in logical notation and in Prolog"

should be "in Togical notation; the Prolog versions are
already in restrictor-scope format".

. 271 In the program listing, the fifth clause of split_suffix

should be:

% y changes to i after consonant, before suffix beg. w vowel
split_suffix([C,i,X|Rest], [C,y],Suffix) :-
\+ vowel(Q), \+ (X = i), vowel(X), suffix([X|Rest],Suffix).

. 273 In the program listing, the fifth clause of split_suffix
should be:

% y changes to i after consonant, before suffix beg. w vowel
split_suffix([C,i,X|Rest],[C,y],Suffix,Cat) :-
\+ vowel(Q©), \+ (X = 1), vowel(X), suffix([X|Rest],Suffix,Cat).

. 274 “karakho...” (in 4 places) should be ‘“karahko...”

. 279 s. 9.4.5. para. 2. after "match the input" add foonote:

As the cuts in Fig. 9.7 suggest, this implementation ignores
some subtleties. Instead of cuts, a more sophisticated

system would use a fifth argument to distinguish 'others' arcs,
which apply to input that does not match the rules, from
situations in which a rule 1is violated. See Ritchie et

al. 1992:21-26.

. 289 para. 2: "Quintus Prolog, and Arity Prolog"

should be "and Quintus Prolog".

. 301 Tine 6: delete "with either".

. 304 At bottom, delete the sentence

"These predicates...Chapter 3."

. 312 Footnote 4 is erroneous and should be ignored.

(Note the corrected 'testmisc.pl' available herewith.)

Appx. A This appendix was originally going to be Chapter 2,

p. 319 1ine 10, and files 'readatom.pl', 'readchar.pl', 'readat2.p]l

and in a few places it says that something "will be"
covered in a subsequent chapter. Change to "was"
wherever applicable.

"char_type/1" should be "char_type/3".

p. 321 2nd Tine of Tisting, and in file 'namenum.pl':

"complete_atomics" should be "complete_line/3".

p. 323 Tine 11: same correction as p. 319 line 10.

Sec. 4.3 The Noun Phrase and Its Modifiers 89

S — NPVP
VP - V(NP)

This will account for structures such as those in Figure 4.4.

S
NP VP
D N? st 14 NP
‘ /\ .
/\
N Comp NP vP Pronoun
/\Nl ‘
D | %
proe g
|
the fact that] birds fly surprised him
(@
S
NP VP
Pronoun \%4 NP
D N1 PP st
NP Poss N P NP Comp S
Name D N! NP VP
N D N! 1%
N
nobody believed John ’s statement at the meeting that 2 birds fly

(b

Figure 4.4 Sentences that contain complex noun phrases.

Sec. 4.4 The Verb Phrase 93

N

/\
NP vpP

\ T

Name 1% AdjP
/\
Degree Adj
Max looked very silly
® Figure 4.5 cont.

Exercise 4.4.1.2

Extend your parser to parse the sentences in Figure 4.5 and the sentences in the previous
exercise. You need not include all expansions of the VP rule, as long as you include enough
to parse the sentences here, and you are prepared to add more as needed later on.

4.4.2 Particles

A PARTICLE is a preposition without an object. Particles occur only with specific verbs
which require them, such as look up or throw out. The same verbs also occur without
the particles, with somewhat different meanings.

When present, the particle occurs in either of two positions, as shown in Figure 4.6
on page 94. Note that Joe looked up the tower is ambiguous (he either looked up the
tower in a book, or looked upward along the tower), and that this ambiguity is structural;
Figure 4.7 on pages 94 and 95 shows the two structures.

Exercise 4.4.2.1

Extend your parser to handle particles and to parse the sentences in Figures 4.6 and 4.7,
giving both structures for Joe looked up the tower. You need not provide for all the com-
binations of particles with other parts of the VP; just add enough VP rules to parse the
sentences needed for this exercise.

4.4.3 The Copula

The copuLA, or verb of being (is, are, etc.), takes an NP or AdjP as complement, as
shown in Figure 4.8 on page 95.

Note (added 2008): In Fig. 4.8 we treat Copula as a separate syntactic category. There is a good
case for treating the copula as a V with a particular subcategorization.

Exercise 4.4.3.1
Extend your parser to parse the sentences in Figure 4.8.

NP VP
/\
Na|me \4 PP
/\
P NP
N
D N!
L
Joe looked up the tolver (as he stood beneath it)
(b)
Figure 4.7 cont.
S
/\
NP VP
N TN
D N! Copula AdjP
]|V Degree Adj
the cat is very fat
S (@
/\
NP VP
N e
D N! Copula NP
/\
N D N!
/\
AdjP N!
A
Adj N
the cat is my favc‘)rite p|et

(®)

Figure 4.8 The copula takes an NP or AdjP as complement.

95

100 English Phrase Structure Chap. 4

S
/\
NP vpP
| /'\
Pronoun \%4 NP PP
/\
Pronoun P S
/\
NP VP
|
Pronoun \%4
|
I saw him after he left
@
S
/\
NP VP
D N1 PP Copula AdjP
| T |
N P S Adj
/\
NP VP
|
Pronoun \%4
|
the discussion after he left was surprising
(b)

Figure 4.10 Examples of PP containing S.

Exercise 4.5.2.1

The sentence I heard about the discussion after the meeting is structurally ambiguous; after
the meeting modifies either discussion or heard. Draw trees for its two structures.

Exercise 4.5.2.2

Extend your parser to handle the sentences in Figure 4.10, as well as:

104 English Phrase Structure Chap. 4

an ID (IMMEDIATE DOMINANCE) rule. It doesn’t say in what order the V, NP, PP, and
AdvP occur. The order is established by one or more LP (LINEAR PRECEDENCE) rules
such as:

V < NP
V < PP
NP < §!

which say that V precedes NP, V precedes PP, NP precedes S', and so on (when they hang
from the same node). This is only a partial specification of the ordering. Constituents can
occur anywhere as long as they don’t violate any LP rules. So if no position is specified
for AdvP, AdvP can occur anywhere. ID/LP parsers have been developed (Kilbury 1984,
Shieber 1984, Barton 1985, Leiss 1990).

Exercise 4.6.1.1

Extend your parser to handle all the sentences in Figure 4.11, plus the same sentences with
very quickly in place of quickly. You need not add rules for expansions of VP that do not
occur in these sentences.

Exercise 4.6.1.2
Convert the ID/LP rules

VP — V, NP, PP, AdvP
V < NP

V < PP

NP < PP

into the complete set of equivalent PS rules.
4.6.2 Postposing of Long Constituents
There is a general tendency in English for long constituents to be POSTPOSED (placed at
the very end of the sentence). This is obviously a practical thing to do; it lets the hearer
parse as many constituents as possible, thereby obtaining context, before tackling the
longest one.

Here’s an example. One reason our VP rule is so complicated is that we must
parse both

Max [vp revealed [np the fact] [pp at the meeting] 1.

and

Max [vp revealed [pp at the meeting | [xp the amazing fact that birds fly]].

Sec. 4.6 Where PS Rules Fail 107

S
NP VP
Name \4 NP Particle
D N! st
N Comp
Copula

Name

John called [people up who [were from Boston

©
Figure 4.12 cont.
been moved from its original site to the beginning. Examples:

Who said Bill thought Joe believed Fido barked? (Max.)

Who did Max say |, thought Joe believed Fido barked? (Bill.)
Who did Max say Bill thought |, believed Fido barked? (Joe.)
Who did Max say Bill thought Joe believed |, barked? (Fido.)

Here |, represents the missing NP.

This phenomenon, called wh-movement, occurs not only in questions, but also in
exclamations such as

What a noise Max said Fido made ,!

and in relative clauses (sentences modifying NPs) as in:

the boy who(m) Fido chased |, into the garden

170 Parsing Algorithms Chap. 6

to tell the Prolog system that queries to nonexistent predicates should simply fail, rather
than raising error conditions. It is not sufficient to declare chart as dynamic, because
when clear_chart abolishes chart, it will abolish the dynamic declaration too.

Exercise 6.5.2.1

Get the chart parser working and use it to parse The dog chases the cat near the elephant.
What information is in the chart at the end of the parse?

Exercise 6.5.2.2

Modify your chart parser to display a message whenever the second clause of parse succeeds.
This will let you know when the chart is actually saving the parser some work. Parse The
dog chases the cat near the elephant again. What output do you get?

Exercise 6.5.2.3 (small project)

Chart parsers need not be top-down. Implement a bottom-up (shift-reduce) chart parser.

6.5.3 Representing Positions Numerically
We noted that storing whole lists in the chart, as in
chart (np, [the, cat, into, the,garden], [into, the,garden]) .

is inefficient. The lists represent positions in the input string; they can be replaced by
word counts (0 for the beginning of the string, 1 for the position after the first word, and
so on), so that chart entries look like this:

chart (np,0,2).

That is: “The NP begins when 0 words have been accepted, and ends when 2 words
have been accepted.” Numbers are more efficient than lists because they are smaller, can
be compared more quickly, and can be distinguished by first-argument indexing.

If we do this, we can get rid of the input “string” altogether, and replace it by a
set of facts about what words are in what positions. For example:

c(the,0,1).
c(dog,1,2).
c(sees,2,3).
c(the,3,4).
c(cat,4,5).
c(near,5,6).
c(the,6,7).
c(elephant,7,8).

It’s quicker to look these up than to repeatedly pick a list apart.

“Fejop Ul ‘aImonns onuewss Supng ¢°L a3y

¥iv%] auios pasvyo 8op K1242

(A)3ed_X (ODS‘say’‘x)suwos, (0ODS _X). (S9¥_X)

N d
(00s’ (&) 3ed‘x)duwos, (015 X) (R’'X)peseyd X A (x)bop X (0dg'say‘X)TITe. (005 X) . (S9U X)
dN A N (¢}
((X‘X)poseyd’ (K)3ed’x)dwos X (005’ (X)Bop ‘X) TT®R, (025 X)

dA dN

(((A'X)poseys’ (x)3ed’'x)swos’ (X)bop'X)IT®
s

211

	NLPPP-Corrected-Pages-titlepage
	1997-correction-list
	p89
	p93
	p95
	p100
	p104
	p107
	p170
	p211

